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Abstract
The INTERSPEECH 2020 Far-Field Speaker Verification Chal-
lenge (FFSVC 2020) addresses three different research prob-
lems under well-defined conditions: far-field text-dependent
speaker verification from single microphone array, far-field text-
independent speaker verification from single microphone ar-
ray, and far-field text-dependent speaker verification from dis-
tributed microphone arrays. All three tasks pose a cross-channel
challenge to the participants. To simulate the real-life scenario,
the enrollment utterances are recorded from close-talk cell-
phone, while the test utterances are recorded from the far-field
microphone arrays. In this paper, we describe the database, the
challenge, and the baseline system, which is based on a ResNet-
based deep speaker network with cosine similarity scoring. For
a given utterance, the speaker embeddings of different channels
are equally averaged as the final embedding. The baseline sys-
tem achieves minDCFs of 0.62, 0.66, and 0.64 and EERs of
6.27%, 6.55%, and 7.18% for task 1, task 2, and task 3, respec-
tively.
Index Terms: Speaker verification, Far-field, Cross channel
matching, Distributed microphone array, Enrollment augmen-
tation

1. Introduction
Automatic speaker verification (ASV) is an enabling technol-
ogy in speech processing and biometric authentication. It has
been deployed in many real-life applications, such as access
control, and law enforcement. With the advent of deep learn-
ing, speaker recognition performance has improved remarkably
in both close-talk and far-field settings. However, it is still far
from perfect, for example, speaker recognition under noisy and
far-field conditions remains a challenging task. The INTER-
SPEECH 2020 Far-Field Speaker Verification Challenge aims
at providing a common platform for the research community to
advance the state-of-the-art.

A typical deep speaker network firstly learns frame-level
speaker representation with the local pattern extractor, which is
usually a time-delayed neural network (TDNN) [1] or a con-
volutional neural network (CNN) [2]. The learnt frame-level
feature sequence is then converted into a fixed-dimension rep-
resentation by different pooling mechanisms such as statistics
pooling [1], attentive pooling [3], and learnable dictionary en-
coding [2]. Since speaker verification in the open set settings
is essentially a metric learning problem, several discriminative
classification losses such as A-softmax [4] and AM-softmax [5]
are employed to enhance the recognition performance.

To compensate for the adverse impacts of reverberation and
noise in the far-field scenario, various approaches have been
proposed for ASV systems. At signal level, weighted prediction
error [6, 7] is employed for dereverberation. DNN-based de-
noising [8, 9, 10] and beamforming [11, 12] are investigated for
single-channel and multi-channel speech enhancement respec-
tively. At the modeling level, data augmentation [13, 14, 15]
and transfer learning [16] are proven to be effective with lim-
ited target domain data. To learn a noise-invariant speaker em-
bedding, adversarial training [17, 18] and variability-invariant
loss [19] are investigated. Also, joint training of speech en-
hancement network and speaker embedding network can im-
prove the ASV performance under noisy conditions [20, 21, 22].
For deep speaker modeling with microphone array, a multi-
channel training framework is proposed for speaker embedding
extraction [23]. Moreover, in the testing phase, enrollment data
augmentation is proposed to reduce the mismatch between the
enrollment and testing utterances [16].

Recently, far-field speaker recognition attracts more and
more attention from the research community. The Voices Ob-
scured in Complex Environmental Settings (VOiCES) Chal-
lenge launched in 2019 aims to benchmark state-of-the-
art speech processing methods in far-field and noisy condi-
tions [24]. The wake-up word dataset Hi Mia has also been re-
leased to facilitate the studies in far-field text-dependent speaker
verification [25]. However, some research questions still require
further exploration for speaker verification in the far-field and
complex environments. Those open challenges including but
not limited to,

1. Far-field text-dependent speaker verification for wake up
control

2. Far-field text-independent speaker verification with com-
plex environments

3. Far-field speaker verification with cross-channel enroll-
ment and test

4. Far-field speaker verification with single multi-channel
microphone array

5. Far-field speaker verification with multiple distributed
microphone arrays

6. Far-field speaker verification with front-end speech en-
hancement methods

7. Far-field speaker verification with end-to-end modeling
using data augmentation

8. Far-field speaker verification with front-end and back-
end joint modeling
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Figure 1: The setup of the recording environment

9. Far-field speaker verification with transfer learning and
domain adaptation

To this end, we collect a large scale far-field speaker veri-
fication dataset with real speakers in multiple scenarios, which
include text-dependent, text-independent, cross channel enroll-
ment and test, distributed microphone array, etc. We also launch
the Far-Field Speaker Verification Challenge 2020 (FFSVC
2020) based on this dataset. It focuses on far-field distributed
microphone arrays under noisy conditions in real scenarios. The
objectives of this challenge are to: 1) benchmark the current
speech verification technology under this challenging condition,
2) promote the development of new ideas and techniques in
speaker verification, 3) provide an open, free, and large scale
speech dataset to the community that exhibits the far-field char-
acteristics in real scenes.

The challenge consists of three tasks with different setups,

• Task 1: far-field text-dependent speaker verification
from single microphone array

• Task 2: far-field text-independent speaker verification
from single microphone array

• Task 3: far-field text-dependent speaker verification
from distributed microphone arrays

All three tasks pose a cross-channel challenge, that is to
have enrollment speech from the close-talk cellphone, and to
have test speech from far-field microphone array(s). This paper
provides the description of the challenge, the dataset, and the
reference baseline.

2. Challenge Dataset
2.1. DMASH Dataset

The Distributed Microphone Arrays in Smart Home (DMASH)
dataset is recorded in real smart home scenarios with two dif-
ferent rooms. Figure 1 shows the recording setup of DMASH
dataset. The recording devices include one close-talk micro-
phone and seven groups of devices at seven different positions
of the room. A group of recording devices include one iPhone,
one Android phone, one iPad, one microphone, and one circular
microphone array with a radius of 5cm. The red arrow in figure
1 points to channel 0 of microphone arrays.

During data collection, each speaker visits three times with
a gap of 7-15 days. In the first visit (F), the noise sources in-
clude an electric fan and the TV broadcast or the office ambi-
ent noise. The recording environment of the second visit (S) is
quiet. In the third visit (T), the electric fan is the only noise.

Table 1: The summary of the FFSVC20 challenge data

Utt ID Content Noise

001-030 ni hao mi ya F: TV/Office + electric fan
(text-dependent) T: electric fan

091- text independent S: quiet

In each visit, more than 300 utterances for each speaker are
recorded. The first 30 utterances are of fixed content: ‘ni hao
mi ya’ in Mandarin Chinese. The next 60 utterances are defined
as semi-text-dependent, in which the text content is ‘ni hao mi
ya’ followed by some random text. The remaining utterances
are text-independent. All speech recordings are in Mandarin
Chinese.

2.2. FFSVC 2020 Challenge Dataset

The FFSVC 2020 challenge dataset is part of the DMASH
dataset. It includes the recordings from the close-talk micro-
phone, the iPhone at 25cm distance, and three randomly se-
lected circular microphone arrays. For the circular microphone
arrays, only four recording channels are used. Under this data
selection protocol, each utterance have 14 (1 + 1 + 4 × 3)
recording channels.

In FFSVC 2020, the training partition includes 120 speak-
ers and the development partition includes 35 speakers. Addi-
tionally, any publicly open and freely accessible dataset shared
on openslr before Feb. 1st, 2020 can be used for training1.

Table 1 shows the details of the challenge data. More infor-
mation about the dataset can be found in [26].

For each task, the evaluation data includes 80 speakers.
There is no overlapping among the speakers in the training, de-
velopment, and evaluation sets for each task. Moreover, there
is no overlapping among the evaluation data of the three tasks.
Recordings from the iPhone at 25cm distance are selected for
enrollment. For testing, one microphone array is used in task 1
and task 2; 2-4 microphone arrays are randomly selected in task
3. For each true trial, the enrollment and the testing utterance
are from different visits of the same speaker.

3. The Baseline System
3.1. Data Processing

3.1.1. Data augmentation

To improve the robustness and generalization of the deep
speaker network, we used pyroomacoustics toolkit [27] to
simulate the room acoustic and generate far-field training data.
The room width was randomly set between six to eight meters,
and the locations of the speaker, noise, and microphones were
also randomly distributed. The noise sources were from MU-
SAN dataset [28], and the signal-to-noise-ratio (SNR) was be-
tween 0 to 20 dB.

3.1.2. Voice activity detection

Two voice activity detection (VAD) methods were explored
in the systems. The first one was the energy-based VAD.
The second method was the gradient boosting algorithm-based
voice activity detection (GVAD) [29] for the far-field speeches.
GVAD is a classifier that separates the speech segments from

1Dataset published on openslr before SLR85, including SLR85.
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Table 2: The ResNet-34 network architecture, C(kernal size,
stride) denotes the convolutional layer, S(kernal size, stride)
denotes the shortcut convolutional layer, [·] denotes the residual
block.

Layer Output Size Structure

Conv1 32× 64× L C(3× 3, 1)

Residual
Layer 1 32× 64× L

C(3× 3, 1)
C(3× 3, 1)

× 3

Residual
Layer 2 64× 32× L

2

⎡⎣C(3× 3, 2)
C(3× 3, 1)
S(1× 1, 2)

⎤⎦ C(3× 3, 1)
C(3× 3, 1)

× 3

Residual
Layer 3 128× 16× L

4

⎡⎣C(3× 3, 2)
C(3× 3, 1)
S(1× 1, 2)

⎤⎦ C(3× 3, 1)
C(3× 3, 1)

× 5

Residual
Layer 4 256× 8× L

8

⎡⎣C(3× 3, 2)
C(3× 3, 1)
S(1× 1, 2)

⎤⎦ C(3× 3, 1)
C(3× 3, 1)

× 2

Encoding 512 Global Statistics Pooling

Embedding 128 Fully Connected Layer
Classifier 10544 Fully Connected Layer

the non-speech segments. The training data of GVAD was
the simulated far-field speeches from the AISHELL-1 dataset
(SLR33) [30], as described in Section 3.1.1. The ‘speech’ and
‘non-speech’ labels are generated with an energy-based VAD
on the original clean data of SLR33. All the far-field speeches
of FFSVC 2020 dataset are processed with the trained GVAD
before testing.

3.2. Acoustic Feature Extraction

Audios were resampled to 16,000 Hz and pre-emphasized be-
fore feature extraction. Two acoustic features were used: (1)
64-dimensional log Mel-filterbank energies with a frame length
of 25ms and hop size of 10ms and (2) 30-dim MFCCs. The
former features were used for ResNet-34 and the latter features
were used for ResNet-50. The extracted features were mean-
normalized before feeding into the deep speaker network.

3.3. Deep Speaker Embedding

ResNet based networks were applied for FFSVC. Two different
ResNet architectures were investigated: (1) ResNet-34 and (2)
ResNet-50.

3.3.1. ResNet-34

The network structure contains three main components: a front-
end pattern extractor, an encoding layer, and a back-end classi-
fier. The ResNet-34 structure [31] is adopted as the front-end
pattern extractor. It learns a frame-level representation from
the input spectral features. The global statistics pooling (GSP)
layer is then used as the encoder layer to compute the mean and
standard deviation of the input frame-level feature sequence.
The GSP layer outputs an utterance-level representation with
speaker information. A fully-connected layer with a classifi-
cation output layer then processes the utterance-level represen-
tation. Each unit in the output layer is represented as a target
speaker identity. All the components in the pipeline are jointly
learned with cross-entropy loss. The detailed configuration of
the neural network is in Table 2.

Table 3: The ResNet-50 network architecture. The meaning of
parameters in this table can be referred to the caption of Table
2.

Layer Output Size Structure

Conv1 64× 128× L C(7× 7, 2)

Residual
Layer 1 256× 64× L

2

⎡⎣C(1× 1, 1)
C(3× 3, 2)
S(1× 1, 1)

⎤⎦× 3

Residual
Layer 2 512× 32× L

4

⎡⎣C(1× 1, 1)
C(3× 3, 2)
S(1× 1, 1)

⎤⎦× 4

Residual
Layer 3 1024× 16× L

8

⎡⎣C(1× 1, 1)
C(3× 3, 2)
S(1× 1, 1)

⎤⎦× 6

Residual
Layer 4 2048× 8× L

16

⎡⎣C(1× 1, 1)
C(3× 3, 2)
S(1× 1, 1)

⎤⎦× 5

Encoding 2048 Global Statistics Pooling

Embedding 1024 Fully Connected Layer
Classifier 2447 Fully Connected Layer

We pre-trained the deep speaker network with larger scale
text-independent mix-dataset (close-talk and its simulation
data). The pre-training data contained 10,554 speakers, in-
cluding SLR33, SLR38, SLR47, SLR49, SLR62, and SLR68
from openslr.org. In the pre-training stage, the model was
trained for 50 epochs with an initial learning rate of 0.1. The
learning rate was divided by ten every 20 epochs. The network
was optimized by stochastic gradient descent.

According to previous works, fine-tuning was an effective
transfer learning approach for far-field ASV [16]. In task 1
and task 3, the fine-tuning data is SLR85 dataset and the first
30 utterances of FFSVC 2020 training dataset. The remaining
FFSVC 2020 training dataset is used to fine-tune the model for
task 2. To prevent overfitting during fine-tuning, data augmenta-
tion is also employed to simulate the far-field data for the clean
close-talk channel. The real and simulated far-field data jointly
fine-tune the pre-trained model. The learning rate is set to 0.001
when fine-tuning.

3.3.2. ResNet-50

The network structure of ResNet-50 is similar as ResNet-34 and
also composed of three main components described in Section
3.3.1. The details of configuration is shown in Table 3.

SLR33, SLR38, SLR62, SLR82, SLR85 from
openslr.org and FFSVC training set were used for
training. The training data contained 2,447 speakers. The
model was trained for 25 epochs with an initial learning rate of
0.1. The learning rate was divided by ten every 5 epochs. The
network was optimized by stochastic gradient descent.

3.4. Back-end Scoring

The cosine distance scoring (CDS) and probabilistic linear dis-
criminant analysis (PLDA) [32, 33] served as the back-end scor-
ing methods.
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Table 4: Performance of the speaker verification systems. “Model” represents the types of deep speaker embedding network; “Scor-
ing” represents the back-end scoring; “DA” represents whether performing data augmentation; “Enrollment” represents whether
some methods were applied for enrollment utterances; “Test” represents the types of utterances selected as test for scoring; “Single”
represents that utterance from one channel of microphone array(s) is selected as test for scoring; “Multi” represents that the utterances
of all channels from the microphone array(s) are used as test for scoring.

Development Set Evaluation Set

ID Model Scoring DA Enrollment Test
Task1 Task2 Task3 Task1 Task2 Task3

minDCF EER minDCF EER minDCF EER minDCF EER minDCF EER minDCF EER

1 ResNet50 CDS N – Multi 0.86 8.04% 0.97 10.96% 0.88 7.22% 0.87 9.93% 0.95 11.87% 0.86 10.68%
2 ResNet34 CDS Y – Single 0.64 6.30% 0.65 6.23% 0.64 5.82% 0.71 7.02% 0.72 6.93% 0.68 7.78%

3
ResNet34 CDS Y – Multi 0.57 6.01% 0.58 5.83% 0.59 5.42% 0.62 6.37% 0.66 6.55% 0.64 7.18%(Baseline System)

4 ResNet34 PLDA Y – Multi 0.58 5.92% 0.60 5.69% 0.61 5.36% 0.63 6.28% 0.67 6.48% 0.67 7.10%
5 ResNet34 CDS Y EDA Multi 0.60 5.87% 0.61 5.61% 0.60 5.33% 0.64 6.23% 0.68 6.36% 0.71 7.03%

3.5. Enrollment Data Augmentation

In far-field speaker verification, the mismatch between enroll-
ment and testing utterances generally exists due to the differ-
ent recording environments. Data augmentation on enrollment
utterances is proven to be effective in reducing this mismatch
[25]. In this paper, instead of randomly simulating the far-field
enrollment data, we used the background noise of the testing
utterance to perform enrollment augmentation. Specifically, a
GVAD was adopted to detect the non-speech parts of the testing
utterance for each trial. These non-speech parts were used as the
background noise to get a simulated enrollment utterance. The
speaker embeddings from the simulated and original utterance
were equally weighted to get the final enrollment embedding.

4. Experiment Results
Table 4 shows the performance of the speaker verification sys-
tems under development and evaluation condition, respectively.
The performance metrics for FFSVC 2020 are equal error rate
(EER) and minimum detection cost function (minDCF) with
Ptarget = 0.01. The minDCF is used as primary metric.

Experimental results of System ID 1 and ID 3 in Table 4
show that larger scale of training data and data augmentation
could significantly improve the performance while ResNet34 is
shallower than ResNet50.

During testing, different channels from the microphone ar-
ray(s) are equally weighted at the embedding level before scor-
ing(ID 3 in table 4). One channel of the microphone array(s)
is selected as single-channel testing for comparison (ID 2 in ta-
ble 4). The results of enrollment data augmentation (EDA) are
also given. Additional attention should be paid to our results in
metric: we observed that enrollment augmentation with PLDA
can improve the EER, but not the minDCF. Finally, the em-
bedding level averaging model(ID 3) which achieves the best
single-system results on evaluation and development datasets is
selected as baseline system for FFSVC 2020 challenge.

5. Conclusions
The primary purpose of the FFSVC 2020 is to investigate how
well the speaker verification technology processes the real-
world audio data, especially for the far-field distributed micro-
phone arrays. The challenge data will be released as a large
scale speech database after the competition. This paper also
provides the description of the baseline system. We believe that
this challenge and the published corpus will promote the ad-
vancement of research and technology development in far-field
speaker recognition.
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enhancement generative adversarial network,” arXiv preprint
arXiv:1703.09452, 2017.

[10] L. Sun, J. Du, L. Dai, and C. Lee, “Multiple-target deep learn-
ing for lstm-rnn based speech enhancement,” in 2017 Hands-
free Speech Communications and Microphone Arrays (HSCMA),
2017, pp. 136–140.

3459



[11] L. Mosner, P. Matejka, O. Novotny, and J. H. Cernocky, “Dere-
verberation and beamforming in far-field speaker recognition,” in
Proc. ICASSP, 2018, pp. 5254–5258.

[12] J. Heymann, L. Drude, and R. Haeb-Umbach, “Neural network
based spectral mask estimation for acoustic beamforming,” in
Proc. ICASSP, 2016, pp. 196–200.

[13] D. Cai, X. Qin, W. Cai, and M. Li, “The DKU System for the
Speaker Recognition Task of the 2019 VOiCES from a Distance
Challenge,” in Proc. INTERSPEECH, 2019, pp. 2493–2497.

[14] S. Novoselov, A. Gusev, A. Ivanov, T. Pekhovsky, A. Shulipa,
G. Lavrentyeva, V. Volokhov, and A. Kozlov, “STC speaker recog-
nition systems for the voices from a distance challenge,” arXiv
preprint arXiv:1904.06093, 2019.

[15] P. Matejka, O. Plchot, H. Zeinali, L. Mosner, A. Silnova, L. Bur-
get, O. Novotny, and O. Glembek, “Analysis of BUT submission
in far-field scenarios of voices 2019 challenge,” in Proc. INTER-
SPEECH, 2019, pp. 2448–2452.

[16] X. Qin, D. Cai, and M. Li, “Far-Field End-to-End Text-Dependent
Speaker Verification Based on Mixed Training Data with Transfer
Learning and Enrollment Data Augmentation,” in Proc. INTER-
SPEECH, 2019, pp. 4045–4049.

[17] J. Zhou, T. Jiang, L. Li, Q. Hong, Z. Wang, and B. Xia, “Train-
ing Multi-Task Adversarial Network for Extracting Noise-Robust
Speaker Embedding,” in Proc. ICASSP, 2019, pp. 6196–6200.

[18] Z. Meng, Y. Zhao, J. Li, and Y. Gong, “Adversarial Speaker Veri-
fication,” in Proc. ICASSP, 2019, pp. 6216–6220.

[19] D. Cai, W. Cai, and M. Li, “Within-sample variability-invariant
loss for robust speaker recognition under noisy environments,” in
Proc. ICASSP, 2020, pp. 6469–6473.

[20] Y. Shi, Q. Huang, and T. Hain, “Robust speaker recognition us-
ing speech enhancement and attention model,” arXiv preprint
arXiv:2001.05031, 2020.

[21] S. Shon, H. Tang, and J. Glass, “VoiceID Loss: Speech Enhance-
ment for Speaker Verification,” in Proc. INTERSPEECH, 2019,
pp. 2888–2892.

[22] F. Zhao, H. Li, and X. Zhang, “A Robust Text-independent
Speaker Verification Method Based on Speech Separation and
Deep Speaker,” in Proc. ICASSP, 2019, pp. 6101–6105.

[23] D. Cai, X. Qin, and M. Li, “Multi-Channel Training for End-to-
End Speaker Recognition Under Reverberant and Noisy Environ-
ment,” in Proc. INTERSPEECH, 2019, pp. 4365–4369.

[24] C. Richey, M. A. Barrios, Z. Armstrong, C. Bartels, H. Franco,
M. Graciarena, A. Lawson, M. K. Nandwana, A. R. Stauffer,
J. van Hout, P. Gamble, J. Hetherly, C. Stephenson, and K. Ni,
“Voices obscured in complex environmental settings (VOICES)
corpus,” arXiv preprint arXiv:1804.05053, 2018.

[25] X. Qin, H. Bu, and M. Li, “Hi-mia: A far-field text-dependent
speaker verification database and the baselines,” in Proc. ICASSP,
2020, pp. 7609–7613.

[26] X. Qin, M. Li, H. Bu, R. K. Das, W. Rao, S. Narayanan,
and H. Li, “The FFSVC 2020 Evaluation Plan,” arXiv preprint
arXiv:2002.00387, 2020.

[27] R. Scheibler, E. Bezzam, and I. Dokmanic, “Pyroomacoustics: A
python package for audio room simulation and array processing
algorithms,” in Proc. ICASSP, 2018, pp. 351–355.

[28] D. Snyder, G. Chen, and D. Povey, “MUSAN: A Music, Speech,
and Noise Corpus,” arXiv preprint arXiv:1510.08484, 2015.

[29] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and
A. Gulin, “Catboost: unbiased boosting with categorical features,”
in Advances in Neural Information Processing Systems 31, 2018,
pp. 6638–6648.

[30] H. Bu, J. Du, X. Na, B. Wu, and H. Zheng, “AISHELL-1: an
open-source mandarin speech corpus and A speech recognition
baseline,” arXiv preprint arXiv:1709.05522, 2017.

[31] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning
for Image Recognition,” in Proc. CVPR, 2016.

[32] P. Kenny, “Bayesian speaker verification with heavy-tailed pri-
ors,” in Proc. of Odyssey: Speaker and Language Recognition
Workshop, Brno, Czech Republic, Jun. 2010.

[33] S. Prince and J. Elder, “Probabilistic linear discriminant analysis
for inferences about identity,” in Proc. of 11th International Con-
ference on Computer Vision, Rio de Janeiro, Brazil, Oct. 2007, pp.
1–8.

3460


