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Abstract
Amyotrophic lateral sclerosis (ALS) is a motor neuron disease
that may cause locked-in syndrome (completely paralyzed but
aware). These locked-in patients can communicate with brain-
computer interfaces (BCI), e.g. EEG spellers, which have a
low communication rate. Recent research has progressed to-
wards neural speech decoding paradigms that have the poten-
tial for normal communication rates. Yet, current neural de-
coding research is limited to typical speakers and the extent
to which these studies can be translated to a target population
(e.g., ALS) is still unexplored. Here, we investigated the decod-
ing of imagined and spoken phrases from non-invasive magne-
toencephalography (MEG) signals of ALS subjects using sev-
eral spectral features (band-power of brainwaves: delta, theta,
alpha, beta, and gamma frequencies) with seven machine learn-
ing decoders (Naive Bayes, K-nearest neighbor, decision tree,
ensemble, support vector machine, linear discriminant analy-
sis, and artificial neural network). Experimental results indi-
cated that the decoding performance for ALS patients is lower
than healthy subjects yet significantly higher than chance level.
The best performances were 75% for decoding five imagined
phrases and 88% for five spoken phrases from ALS patients. To
our knowledge, this is the first demonstration of neural speech
decoding for a speech disordered population.
Index Terms: ALS, BCI, neural speech decoding, MEG, PCA

1. Introduction
Amyotrophic lateral sclerosis (ALS), also known as Lou
Gehrig’s disease, is an idiopathic, fatal, and fast progressive
neurodegenerative disease characterized by the degeneration of
upper and lower motor neurons (at the spinal or bulbar level)
disrupting the ability of the brain to control voluntary motor
function leading to dysphagia, dysarthria, and impaired limb
and respiratory function [1]. Regardless of the site of onset,
progressive bulbar motor deterioration is common to most ALS
patients which leads to the impairment of speech and thereby
substantially diminishes the communication ability and short-
ens survival [2]. Reestablishing communication for these pa-
tients can significantly improve their quality of life. Current
augmented and assistive communication (AAC) devices help
these patients by using their residual movements, e.g., cheek
twitches or eyeball movements, to navigate a cursor on alpha-
bet displays to spell out words, although these devices tend to

be slow, error-prone, and laborious [3]. Unfortunately, most pa-
tients with ALS eventually advance to a state of complete paral-
ysis called locked-in syndrome (LIS), which can be also caused
by severe brain damage. LIS is characterized by quadriplegia
and anarthria but with preservation of consciousness [4], i.e.,
awake but selectively deafferented having no means of produc-
ing speech, limb or facial movements. Current AAC devices
fail for these patients. The brain may be the only output path-
way that can provide a level of communication.

Current EEG-BCI spellers provide a means of communica-
tion for these patients but the rates are slow (under 10 words
per minute) [3]. Slow communication rate impacts the actual
use of the device, as patients experience fatigue. Recent stud-
ies on neural speech decoding showed potential for faster com-
munication rate, which can be achieved by decoding overt or
covert speech directly from the brain and bypassing the cortico-
spinal pathway. The efficacy of this decoding paradigm has
been shown previously for invasive and non-invasive recordings
using ECoG, MEG, and EEG, respectively [5–17]. However,
these studies are limited to typical speakers with no communi-
cation disorders (epileptic patients in these ECoG studies have
no speech disorders), whereas, the target group for this research
is patients with LIS. It is still unclear whether if speech decod-
ing can be successfully performed on the neural signals of a
target population (with speech impairment).

In this study, we investigated the neural decoding of imag-
ined and spoken phrases from the neural signals of patients with
ALS. We used magnetoencephalography (MEG) to record the
neuromagnetic signals of both healthy and ALS subjects while
they were imagining and speaking different short phrases. MEG
has a high spatial and temporal resolution and thus is suitable to
study the fast spatio-temporal dynamics of speech processing
in the brain [18–21]. Previously, we have shown the efficacy
of using MEG for neural speech decoding with high accuracy
from healthy subjects [13–17]. Although current MEG ma-
chines are non-portable and costly, recent studies on optically
pumped magnetometer based MEG systems [22–24] including
decoding of imagination [25] and language [26] showed the po-
tential of building next-generation, movable, wearable, and low-
cost OPM-MEG mediated speech-BCIs in the near future.

Seven machine learning classifiers were used as decoders,
which were to classify the neuromagnetic signal features cor-
responding to five imagined and spoken phrases. We used the
spectral features of the neural signals, i.e., the band power of
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Figure 1: An MEG unit with a participant with ALS. Unlike
healthy controls who prefer to sit up, participants with ALS pre-
fer to lay down in the machine due to their potential fatigue.

delta, theta, alpha, beta, gamma, lower high gamma, and upper
high gamma and their combination to train the decoders. Spec-
tral features have been shown to contribute to robust decoding
performance in various decoding experiments [10,11,13,14]. In
addition, we analyzed the decoding performance by implement-
ing PCA compression on the concatenation of spectral features.

2. Data Collection and Preprocessing
Ten individuals (7 healthy; 3 females; age= 41± 14 years and
3 ALS; 1 female; age= 52± 12 years) participated in the study
with voluntary consent. The healthy subjects had no history of
language or cognitive disorders. The ALS subjects were in early
to mid-stage of the disease with mild but noticeably speech im-
pairment. Although their speech intelligibility was still beyond
90% (word recognition accuracy based on listening tests), they
spoke significantly slower (as slow as 132 words per minute)
than healthy controls (typically 200 words per minute). One pa-
tient had bulbar onset, one had spinal onset, and the other had
generalized ALS symptoms. Two identical Elekta Neuromag
TRIUX MEG machines (MEGIN, LCC) at the Dell Children’s
Medical Center in Austin, TX and the Cook Children’s Med-
ical Center in Fort Worth, TX (Figure 1) were used. IRB ap-
provals have been obtained from the corresponding institutions
prior to this study. The machines are housed within a magnet-
ically shielded room to restrict external magnetic field noise.
The machines have 204 gradiometers and 102 magnetometers.
ECG and EOG each with two bipolar integrated sensors were
used to collect the heartbeat and eye-blink artifacts.

A time-locked protocol was designed for the speech imag-
ination and production task. Stimulus onset was characterized
by displaying a visual stimulus generated by a computer run-
ning the STIM2 software (Compumedics, Ltd.), and presented
via a DLP projector situated at 90 cm from the subjects’. Five
AAC phrases were used as stimuli (1. Do you understand me,
2. That’s perfect, 3. How are you, 4. Good-bye, 5. I need help).
The phrases were shown for one second, one at a time, in a
pseudo-randomized order. Then the subjects imagined and pre-
pared to speak the shown phrase for 1 s, after which they overtly
produced the sentence at their natural speaking rate. This pro-
cedure was repeated 100 times per phrase per subject. To over-
come the difficulty in verifying the timing of imagined speech,

we designed our protocol to collect both imagination and pro-
duction consecutively in the same trial under time constraints.

The signals were recorded at 4 kHz sampling rate which
were low pass filtered with a 4th order Butterworth low-pass fil-
ter with cutoff frequency 250Hz and resampled to 1 kHz. Notch
filters with cutoff frequencies 60Hz and its harmonics were
applied to remove the line noise. Through visual inspection,
trials containing high amplitude artifacts and untimely articu-
lated trials were removed with an average rejection rate of 25%.
The first 60 trials for each phrase were used for analysis. Data
only from gradiometer channels were used for decoding owing
to their effectiveness in noise suppression over magnetometers.
Noisy and unresponsive channels were removed. Data from 196
gradiometers were used in the decoding task.

3. Methods
3.1. Features

Brainwaves play a key functional role in neural information pro-
cessing and thus might provide significant insight into the de-
coding process. MEG provides a direct and reliable representa-
tion of the functional oscillatory characteristics of the brain ac-
tivity, largely due to its high temporal resolution and low signal
distortion compared to EEG [27–29], thereby, making it suit-
able to use the wide range of its oscillatory dynamics. Thus,
in this study, we explored the efficacy of spectral features for
which we computed the band-power of different brainwaves of
the MEG signals. The frequency ranges of for power calculation
were: delta (0.3 − 4Hz), theta (4 − 8Hz), alpha (8 − 15Hz),
beta (15 − 30Hz), gamma (30 − 59 Hz), lower high gamma
(61 − 119) Hz and upper high gamma (121 − 250Hz). The
spectral features were extracted from each of the 196 gradiome-
ter signals for each trial making the feature dimension to be 196
for each trial. We also performed the decoding analysis by con-
catenating all the spectral features as the input to the decoders.
Considering the high dimension of sensor and feature concate-
nation (1372 = 196 sensors × 7 brainwaves), we performed
PCA on the concatenated features and reduced the feature di-
mension with a 90% variance threshold.

3.2. Decoders

Seven machine learning algorithms were used to classify the
MEG features corresponding to different phrases. They were
Naive Bayes (NB), K-nearest neighbor (KNN), decision trees
(DT), Ensembles (EN), support vector machine (SVM), lin-
ear discriminant analysis (LDA), and artificial neural network
(ANN). Naive Bayes classifier was designed with a normal dis-
tribution predictor and Gaussian Kernel. The KNN classifier
was designed with a K value of 5 and Euclidean distance met-
ric. For decision tree, the maximum number of splits were set
to 5, with leaves being merged that originated from the same
parent node yielding a sum of risk values greater or equal to the
risk associated with the parent node and the optimal sequence
of pruned trees were set to be estimated. The predictor selection
method was set to ‘Standard CART’ that selects the split predic-
tor that maximizes the split-criterion gain over all possible splits
of all predictor and the split criterion was ‘gdi’ (Gini’s diversity
index). For ensembles, the aggregate method was bagging with
random predictor selections at each split (random forest). The
maximum number of learning cycles was set to 100 with a dis-
criminant analysis weak learner. For SVM, a 2nd order polyno-
mial kernel was chosen based on cross-validation (CV). ‘C’ pa-
rameter and kernel scale were optimized based on the Bayesian
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Figure 2: Performances of healthy and ALS subjects during articulation and imagination using spectral features and seven decoders (a)
ALS-Articulation (b) ALS-Imagination (c) Healthy-Articulation (d) Healthy-Imagination. LHG and UHG represent lower and upper
high gamma brainwaves respectively. ‘All’ represents all spectral features concatenated. Error bars indicate standard deviation.

optimization search. Considering the lower sample size than the
feature dimension, we chose linear type discriminant analysis.
The linear coefficient threshold and the amount of regulariza-
tion were computed based on the Bayesian optimization search.
The ANN decoder had one hidden layer of 128 nodes followed
by a sigmoid and then a softmax layer each of 5 nodes. The
training was performed using a scaled conjugate gradient opti-
mizer with backpropagation with a learning rate of 0.01 (based
on coarse to fine tuning) for a maximum of 100 epochs with
early stopping validation patience of 6 epochs. Considering
the high cognitive variance across subjects [15, 30, 31], here
we performed subject-dependent decoding. We trained the de-
coders with two strategies, i.e., first, we implemented 5-fold
cross-validation (12 trials/phrase in one fold) and second, we
performed a sequential split of the data, where we used the first
48 recorded trials for training and the next 12 trials for testing
because for ALS patients the chance of performance deteriora-
tion is more likely with time due to the higher motor load for
articulatory compensation.

4. Results and Discussion

Figure 2 shows the average accuracies for 7 healthy participants
and 3 participants with ALS during imagination and articulation
obtained with the spectral features evaluated via seven classi-
fiers. The accuracies for both imagination and articulation de-
coding for ALS were significantly lower than the healthy across

all classifiers and features (1-tail t-test, p < 0.05) except (high)
Gamma frequencies. The significantly lower performance in
the case of ALS compared to healthy subjects indicates the dif-
ficulty in neural speech decoding for patients. The result in spo-
ken (articulated) speech decoding was expected, considering the
likely abrupt motor behavior such as articulatory compensation
or diaphragmic pulsating during speech production exhibited by
the patients. The results in speech imagination decoding for
these patients were surprising, because the accuracies were as
low as chance level (20%) indicating the difference in brain ac-
tivity between healthy and ALS in speech imagination. This is
possibly due to fatigue of the participants with ALS for imagi-
nation task (attention). As mentioned earlier, patients with ALS
preferred to lay down in the MEG machine, while all healthy
controls preferred to sit up during the experiment. Future stud-
ies with a larger number of subjects and in-depth neural pattern
analysis, however, are needed to verify these findings and pro-
vide a better interpretation.

When comparing the decoding accuracies obtained with in-
dividual brainwaves, a consistent pattern was observed for both
healthy and ALS subjects, which signifies the distinct role of
brainwaves in neural speech decoding. For articulation decod-
ing, the best performances were with high gamma frequencies
(61−119Hz; 121−250Hz) consistent with the previous MEG
and ECoG findings [29, 32]. Delta band (0.3 − 4Hz) also re-
sulted in relatively better performance for both healthy and ALS
subjects. Since we used multi-word sentences as stimuli, delta
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Figure 3: Performances of ALS and healthy subjects during articulation and imagination using concatenated spectral features and PCA
compressed features and seven decoders: (a) ALS (b) Healthy. Error bars indicate standard deviation.

oscillations might be reflecting the combinatorial processes un-
derlying the unification of words to sentences as observed in
previous speech perception studies [33, 34]. It might be the
self-perceived speech by the subjects that is driving the decod-
ing process with this brainwave. In imagined speech decod-
ing, the role individual brainwaves were not distinct for both
the control and target population group except a slightly higher
performance (about 3%) was obtained with lower high gamma
features for ALS.

Figure 3 demonstrates the significant improvement in de-
coding performance with the compressed feature set that was
obtained by PCA based dimension reduction. With a thresh-
old of 90% variance, 10 principal components were selected,
and the decoding was performed on the compressed feature set
both for healthy and ALS data. The improvement in accuracies,
both for imagination and spoken speech decoding was statisti-
cally significant across both the population group (1-tail paired
t-test, p < 0.05). After compression, the articulation decoding
performances for ALS were almost similar to healthy subjects,
however, the final accuracy after PCA reduction during imagi-
nation decoding was still lower than healthy subjects across the
evaluations of various classifiers. Nevertheless, this improve-
ment suggests the efficacy of dimension reduction for decoding
speech in both healthy and ALS. After PCA, the best classifica-
tion accuracy for healthy subjects during imagination decoding
was 90.10% and for articulation decoding, it was 94.91% with
the ANN classifier. For ALS, after PCA, the best articulation
decoding accuracy of 87.78% was obtained with the SVM clas-
sifier (ANN: 85.50%) and the best imagination decoding accu-
racy was with ANN classifier 74.57% (Figure 3).

Regarding the decoders, ANN outperformed the rest with
the next better performance by both SVM and LDA and then
satisfactory performances with Ensembles and Decision trees.
The performances obtained with KNN and NB classifiers were
the lowest. The better performances even with a shallow neu-
ral network over other machine learning classifiers suggest that
these accuracies might further be improved with deep learning
classifiers given enough sample size. However, with PCA all the
classifiers performed similarly well suggesting the encouraged
discriminating distribution after PCA compression (see supple-
mentary materials, Figure S1, where t-SNE distributions of the
features before and after PCA compression is shown). Please
note, although the results reported here were with the cross-

validation approach, the sequential split approach (training with
first 48 trials and testing with next 12 trials per phrase) also
resulted in similar performance (see supplementary materials,
Figure S2), which indicates the absence of any performance de-
terioration within the first 60 trials. Considering the ultimate
goal of speech-BCIs is imagined speech decoding for patients,
these observations facilitate the need for better feature extrac-
tion strategies and decoders.

5. Conclusions
We showed the possibility of decoding imagined and spoken
phrases from non-invasive neural (MEG) signals of patients
with mild ALS. To our knowledge, this is the first demonstra-
tion of neural speech decoding from a population with neuro-
logical speech disorders. Spectral features (i.e., band-power
of brainwaves) were used for decoding which reproduced the
higher performance of high-gamma frequencies in speech de-
coding. Relatively lower decoding performance was observed
for patients with ALS compared to healthy but significantly
above chance level. PCA compression significantly improved
the decoding performance for both the healthy and ALS group
for both imagination and spoken speech decoding. This pilot
study included data from three ALS patients only for one ses-
sion. Analysis with a larger number of more severe ALS sub-
jects (LIS) with multiple sessions is needed to verify the efficacy
of this study. Further, a higher level of neurolinguistic under-
standing of the imagined speech would help design algorithms
for higher decoding performance on imagined speech.
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