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Abstract

Direct synthesis from intracranial brain activity into acoustic
speech might provide an intuitive and natural communication
means for speech-impaired users. In previous studies we have
used logarithmic Mel-scaled speech spectrograms (logMels) as
an intermediate representation in the decoding from ElectroCor-
ticoGraphic (ECoG) recordings to an audible waveform. Mel-
scaled speech spectrograms have a long tradition in acoustic
speech processing and speech synthesis applications. In the
past, we relied on regression approaches to find a mapping from
brain activity to logMel spectral coefficients, due to the continu-
ous feature space. However, regression tasks are unbounded and
thus neuronal fluctuations in brain activity may result in abnor-
mally high amplitudes in a synthesized acoustic speech signal.
To mitigate these issues, we propose two methods for quantiza-
tion of power values to discretize the feature space of logarith-
mic Mel-scaled spectral coefficients by using the median and
the logistic formula, respectively, to reduce the complexity and
restricting the number of intervals. We evaluate the practicabil-
ity in a proof-of-concept with one participant through a simple
classification based on linear discriminant analysis and com-
pare the resulting waveform with the original speech. Recon-
structed spectrograms achieve Pearson correlation coefficients
with a mean of r=0.5 £ 0.11 in a 5-fold cross validation.
Index Terms: neural signals for spoken communication,
speech synthesis, electrocorticography, BCI

1. Introduction

Speech is the first and foremost means of human communica-
tion. Millions of people worldwide suffer from severe speech
disorders, in particular, those who have completely lost their
ability to speak due to neurological diseases like amyotrophic
lateral sclerosis (ALS), brain stem stroke, or severe paralysis.
For example, ALS can lead to the locked-in syndrome - a state
in which the affected are fully conscious and aware of their en-
vironment, but have no possibility to produce speech. The most
promising technology for restoring the ability to communicate
for these individuals are biosignal-based spoken communica-
tion systems [1], and more specifically Brain-Computer Inter-
faces (BCIs) [2].

Various systems targeting speech-impaired users have been
developed over the last 30 years [3]. While spelling devices
based on the P300 signal have demonstrated some degree of
success using non-invasive measurements of brain activity (e.g.
electroencephalography) [4, 5], the spelling rate is insufficient
for a natural spoken communication. However, using intracra-
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nial brain signals to directly control a speech synthesis system in
real-time has great potential for a neuroprosthetic spoken com-
munication device.

Several studies have tackled the problem of a direct con-
version towards an acoustic speech signal based on brain activ-
ity acquired during speech production tasks. In a pilot study,
Herff et al. [6] synthesized an acoustic speech waveform by
introducing a two-step approach: (1) Prediction of a spectro-
gram for the spoken utterance using linear regression models
and (2) Phase information recovery through the application of
the Griffin-Lim algorithm [7]. Results indicate that original and
reconstructed waveform reveal significant correlations. To im-
prove the quality and intelligibility of the synthesized speech
output, systems based on deep learning methods have recently
come into focus. Anumanchipalli et al. [8] applied recurrent
neural networks to estimate kinematic trajectories of articula-
tory movements, which can be decoded into acoustic speech.
In another study, we used convolutional neural networks to first
estimate the speech spectrogram and employ a WaveNet model
as a second step for waveform generation conditioned on these
spectral features [9]. Furthermore, Akbari et al. [10] proposed
deep neural networks in a speech perception task, for a non-
linear regression onto an acoustic representation for subsequent
resynthesis. In addition, Herff et al. employed a unit selec-
tion approach to reconstruct the acoustic signal by selecting the
closest speech unit based on the cosine similarity of the corre-
sponding neural features [11].

The results of the aforementioned studies indicated that re-
gression approaches are suitable methods for the mapping of
brain activity data onto an internal representation for resynthe-
sis. However, regression tasks are unbounded and thus may
cause unintended amplitude spikes and unnatural increases of
the output volume of synthesized speech signals in case the
input signals show large variation. Unfortunately, such large
fluctuations are common in neural recordings. While amplitude
spikes are not a major issue in offline analysis, they could be
prohibitively distracting to the user for closed-loop speech de-
coding.

In this study, we examine the mapping from brain activity
features to intermediate representations as a classification task
to avoid the unbounded behaviour of regressions. Here, we fo-
cus our investigation on two distinct quantization approaches to
discretize the continuous space of logarithmic Mel-scaled spec-
tral features into a manageable number of disjoint intervals. To
evaluate the practicability of discretized intervals of logMel fea-
tures for the speech decoding tasks, we employ a simple clas-
sification based on linear discriminant analysis (LDA) to select
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the appropriate interval. The final acoustic waveform is then
reconstructed by applying an iterative approximation on the se-
lected LogMel intervals.

For a proof-of-concept of the proposed method, we rely on
time-aligned data from a single participant. The data consists of
parallel recordings of ECoG and acoustic signals of prompted
speech. For evaluation, we compare both methods with the best-
case quantization error for a limited amount of intervals.

2. Material and Methods
2.1. Experiment Setup and Data Acquisition

For our analysis, we relied on a pre-recorded corpus of time-
aligned ECoG and speech data acquired during an audible
speech production task and focused in this feasibility study on
the most promising participant based on overall signal quality
and our previous investigation [12]. In each trial, English sen-
tences were first prompted by simultaneous display on a com-
puter screen and a narration via loudspeakers. The participant
was then asked to recite the sentence from memory immediately
after its visual and auditory presentation. All sentences (50 in
total) were taken from the Harvard sentences corpus [13], which
provides a phonetically-balanced set of phones.

The participant (age 24, male) in this study was being
treated for intractable epilepsy and underwent a medical eval-
uation to localize the seizure foci prior to surgical resection.
For this monitoring process, an electrode grid with 56 channels,
a strip with 4 channels and 4 depth electrodes were implanted
on the left hemisphere solely based on his clinical needs, while
covering some relevant areas for speech production. The par-
ticipant gave written informed consent and the experiment was
approved by an IRB of Mayo Clinic, University of California
San Diego and Old Dominion University.

We acquired ECoG signals using stacked g.USB amplifiers
(Guger Technologies, Austria) at a sampling rate of 1200 Hz.
Acoustic recordings of the participant’s speech were done with
a Snowball iCE microphone (Blue Microphones, California) us-
ing a sampling rate of 48 kHz. All data recordings were syn-
chronized using the general-purpose BCI2000 system [14].

2.2. Feature Extraction

As meaningful features, we focused on the broadband gamma
(70-170 Hz) band for the ECoG signals, which is known to con-
tain correlates relevant to speech [15, 16] and language [17]
processes. Following best practice in our previous work [6] we
removed the linear trend from each ECoG channel and down-
sampled the ECoG signals to 600 Hz. All channels were re-
referenced to a common average (CAR spatial filtering). In or-
der to attenuate the first harmonic of the 60 Hz line noise, we
used an elliptic IIR notch filter prior to extracting the broadband
gamma band using bandpass filtering. The resulting signals
were segmented into 50 ms windows with a 10 ms frameshift
to capture the complex dynamics of neural activity underlying
speech production. For each of these windows, we computed
the signal energy and applied the natural logarithm to Gaus-
sianize the data distribution.

We used context stacking to integrate information about
temporal changes in the neural dynamics by augmenting each
window with 8 neighboring windows ranging from -200 ms to
+200 ms of neural activities. This results in feature vectors with
9 - 64 components.

The time-aligned acoustic speech data was transformed to
logMel spectral features using the following steps: We first
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Figure 1: Sigmoid quantization: Interval boundaries are de-
fined using a sigmoid function. Given a uniform spacing (X-
axis), a fixed number of intervals is defined with higher resolu-
tion toward the low and high ends of the spectral range. The
colorbar applies to the range of one spectral bin of the logMel

spectrogram.

downsampled the acoustic data to 16 kHz and applied a seg-
mentation with the same window size and frameshift as for the
ECoG signals (50 ms and 10 ms, respectively). This prepro-
cessing procedure allows to align ECoG features with spectral
acoustic features while capturing speech-relevant information.
In order to reduce the number of spectral features, we used tri-
angular mel filter banks to finally extract 40 logarithmic mel-
scaled spectral coefficients.

2.3. Quantization Approaches

In this study, we aim to transform the regression problem into a
classification task. For this purpose, we convert the continuous
feature space of the independent variable (spectral coefficients)
into a discrete space by finding appropriate quantization inter-
vals. Here, we focus on two approaches for quantization, i.e. (i)
the median-cut quantization and (ii) the sigmoid quantiziation
method. Both methods are based on a predefined number of
quantization intervals. The first approach, a median-cut quanti-
zation [18, 19], is an algorithm that determines interval bound-
aries based on the number of occurrences of the spectral coeffi-
cients in the underlying data. In contrast, the second approach
uses a sigmoid function with uniform spacing to define the in-
terval boundaries. The sigmoid quantization method overcomes
the imbalanced distribution of spectral coefficients, which typi-
cally occurs in speech data, where the amount of silence frames
by far outnumber the speech frames.

The median-cut quantization is an iterative algorithm that
works in the following way: Starting with all observed coeffi-
cients of a spectral bin, the algorithm splits the largest interval
at its median into two intervals and iterates this splitting routine
until a predefined amount of intervals is reached. Each of the
resulting intervals is represented by one quantization value and
all coefficients can be assigned based on the interval boundaries.
In order to dequantize the spectrogram, each label gets replaced
by the median value corresponding to its interval.

The sigmoid quantization relies on the logistic formula out-
lined in equation (1) to determine the boundaries of each inter-
val.
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where minspec and maxspec represent the minimum and max-
imum spectral coefficient and k defines the growth rate of the
function. We used a uniform distribution for z to extract the in-
terval boundaries based on the curve values. Figure 1 illustrates
this procedure for the case of § intervals with a growth rate of
k = 0.5. By using a logistic function, the granularity of the
interval distribution can be tuned individually with the growth
rate k, e.g. for coefficients in the low-frequency range such as
silence as well as for coefficients in higher, speech-related fre-
quencies.

2.4. Spectrogram and Waveform Reconstruction

For each logMel frequency bin, we use a linear discriminant
analysis to predict the quantized spectral coefficient from the
ECoG features. Due to the high number of ECoG features re-
sulting from the number of electrodes multiplied by the tempo-
ral context, we performed a feature selection procedure prior to
model training. For this purpose, the Spearman correlation co-
efficients between each ECoG feature and the mean spectral co-
efficients were calculated, ranked according to the highest cor-
relation, and the top-150 features were selected.

After feature selection, the logMel spectral coefficients
were discretized using the two outlined quantization ap-
proaches. With this quantization step, the regression problem
was transformed to a classification task. Thus, a linear discrimi-
nant analysis could be used to find the maximum discriminabil-
ity among the intervals. Although it is believed that the map-
ping between brain activity and speech outcome in terms of an
acoustic signal is not linear [20], we focus here on a straight-
forward linear classifier. The initial experimental results pre-
sented in this paper are meant as a proof-of-concept to demon-
strate the suitability of a discretized intermediate representation
for speech decoding in general. We are convinced that more
complex models, like deep neural networks will further improve
the achieved performances, which we plan to investigate in the
future.

For the transformation of estimated logMel spectral coeffi-
cients into an acoustic speech signal, we used the Griffin-Lim
algorithm. In this iterative procedure, we limited ourselves to a
number of 8 iterations in order to approximate the phase spec-
trogram and to obtain a time signal via the inverse Fourier trans-
form.

3. Experimental Results

Experiments are performed in two steps: first, the best-case
quantization error is estimated for a limited number of inter-
vals assuming perfect performance. Second, decoding results
based on linear models are compared with chance level esti-
mated by breaking the temporal alignment of the data. These
comparisons are carried out for both quantiziation approaches.

3.1. Quantization Error

We computed the quantization error over the number of inter-
vals for both quantization methods to estimate the impact of dis-
cretization and to obtain the best-case decoding quality assum-
ing perfect accuracy. Figure 2 displays the decrease of quanti-
zation error measured by the root mean squared error (RMSE)
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Figure 2: Quantization error [in RMSE] over the number of
intervals. RMSE measures the difference between reference and
dequantized logMel spectral coefficients.

"The fish twisted and turned on the bend hook"

Original

Frequency (kHz)
O N B OO OO N B O 0O N B O
Sigmoid

" Median-cut

Seconds (s)

Figure 3: logMel spectral coefficients prior to quantization (top)
and after dequantization for sigmoid (middle) and median-
cut (bottom) quantization approach assuming perfect accuracy.
Both quantization approaches use 9 intervals.

over the number of intervals, ranging from 3 to 22. As the num-
ber of intervals increase, the quantization error decreases and
approaches 0 when the number of intervals approaches the res-
olution of the original feature space.

Figure 3 shows the logMel spectral coefficients of original
speech (top) for one utterance along with the dequantized log-
Mel spectra with respect to the sigmoid (middle) and median-
cut (bottom) quantization approach, both using 9 intervals. This
example indicates that the sigmoid quantization preserves more
information in the higher frequencies while the median-cut
quantization puts emphasis on silence portions and thus does
not maintain a sufficiently fine resolution across the frequencies
representing speech vocalization.

3.2. Spectrogram and Waveform Estimation

Speech decoding evaluation was performed using a 5-fold
cross-validation. Linear models were trained on 80% of the
data (40 utterances) and tested on the remaining 20% (10 ut-
terances). Feature selection was performed in each fold on the
training data only.

For evaluation, the Pearson correlation between original
and estimated speech spectrograms was calculated by averag-
ing over the correlation coefficients for each logMel frequency
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Figure 4: Decoding results based on linear classification for sigmoid and median-cut quantization. Mean Pearson correlation (blue
bars) and chance level (red bars) over number of intervals. Whiskers show standard deviation in 5-fold cross-validation.

bin. Figure 4 shows the Pearson correlation coefficients be-
tween original and decoded spectrograms over the number of
intervals. For the sigmoid quantization, results imply that a
small number of quantization intervals (e.g. 5 or 7) perform as
well as a larger number (blue bars). We also estimated a chance
level (red bars) which breaks the alignment of the time-aligned
simultaneous recordings of ECoG and logMel spectral coeffi-
cients by choosing a random point in time, splitting both data
streams into two partitions at that point and swap the order of
only one of the streams.

Reconstructed waveforms achieve an average objective in-
telligibility score [21] of 0.22+0.02 and 0.2740.01 respec-
tively, for the sigmoid and median-cut quantization approach
across all intervals.

4. Discussion & Conclusion

The paper describes a proof-of-concept study towards synthe-
sizing audible speech from brain activity data measured directly
from the cortex based on a fixed set of discretized units. For the
discretization of an intermediate representation, we investigated
and compared two different approaches, the median-cut and the
sigmoid quantization. Both methods are designed to counter
the unbounded behavior of regression analyses to avoid poten-
tial biases caused by spurious amplitude spikes in neural data,
while keeping the quantization error adjustable to preserve the
desired spectral characteristics. The present results are limited
to a single subject and further research is needed to conclude
whether the results will generalize across subjects. In addition,
further analysis is needed to determine how spurious amplitude
spikes in the non-quantized condition compare to reconstructed
speech in the quantized condition. Both limitations constitute
important research questions which will provide more insights
on how quantization methods can contribute to the challenging
task of generating acoustic speech from brain activity data.

The experimental results in our study indicate that quanti-
zation is a feasible approach to reduce the spectral feature space
to a small number of intervals while maintaining a close resem-
blance to the original speech signal. These outcomes based on
straight-forward linear models achieved encouraging results in-
dicating the applicability for speech synthesis from neural sig-
nals.
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