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Abstract
A listener listens to one speech stream at a time in a multi-
speaker scenario. EEG-based auditory attention detection
(AAD) aims to identify to which speech stream the listener has
attended using EEG signals. The performance of linear model-
ing approaches is limited due to the non-linear nature of the hu-
man auditory perception. Furthermore, the real-world applica-
tions call for low latency AAD solutions in noisy environments.
In this paper, we propose to adopt common spatial pattern (CSP)
analysis to enhance the discriminative ability of EEG signals.
We study the use of convolutional neural network (CNN) as the
non-linear solution. The experiments show that it is possible
to decode auditory attention within 2 seconds, with a compet-
itive accuracy of 80.2%, even in noisy acoustic environments.
The results are encouraging for brain-computer interfaces, such
as hearing aids, which require real-time responses, and robust
AAD in complex acoustic environments.
Index Terms: Auditory attention detection (AAD), convolu-
tional neural networks (CNN), electroencephalogram (EEG),
common spatial pattern (CSP).

1. Introduction
Just like computers, humans also have limited bandwidth and
processing power when listening. However, humans have de-
veloped the ability to pay selective attention to one of the
speech streams in a multi-speaker environment, or “cocktail
party scenario”[1]. This is still a highly non-trivial task for ma-
chines. For example, hearing aids are not able to follow a target
speaker in the presence of noise and other competing speech
streams [2].

To enhance the listening experience of hearing prostheses
users, many previous studies focused on reducing background
noise and increasing speech intelligibility [3, 4, 5, 6]. Even if
a good speech separation is available, selection of the attended
speaker is still a fundamental problem in a cocktail party en-
vironment, that motivates us to look into brain-computer in-
terface. Can our brains inform the hearing aids which speech
stream we would like to pay attention to?

Recent studies have demonstrated that selective attention
in a cocktail party scenario can be decoded using recordings
of brain activity, such as magnetoencephalography (MEG)[7],
EEG [8, 9] and electrocorticographic (ECoG) [10]. The study
of auditory attention detection (AAD) helps us understand the
human auditory processing, and auditory attention detection can
become an important function of hearing aids devices in the
future[11].

Among different measures of cortical activity, EEG is a re-

alistic option for BCI applications [12], because it’s a cheaper,
non-invasive solution, and it is easy to use. There have been suc-
cessful prior studies on auditory attention detection using EEG
data. The stimulus reconstruction [13, 14] is a typical technique.
Studies based on linear stimulus reconstruction [8, 9, 15, 16]
have verified the feasibility of reliable AAD using EEG signals.
However, Faure et al. [17, 18] pointed out that the human au-
ditory system is inherently non-linear, therefore, linear methods
are not the best to model the complex and dynamic nature of the
brain.

Another limitation of the stimulus reconstruction technique
is that AAD performance depends on the duration of the eval-
uated trial. A longer trial duration leads to better performance.
The trial duration is an absolute delay on top of the time re-
quired for computing [19, 20]. The temporal resolution of ex-
isting approaches for reliable attention decoding is in the order
of 30 seconds without counting the computing time, while hu-
mans are able to switch attention from one speaker to another
at a temporal resolution of around 1 second [21]. In the case of
hearing aids, a longer trial duration means a longer delay occurs
for the brain to inform the device about the switching of audi-
tory attention. The real-world BCI systems, such as hearing
aids, video conferencing systems, call for real-time implemen-
tation of auditory attention detection.

With the advent of deep learning in computer vision and
speech processing, neural networks provide us an effective way
to understand the complex and highly non-linear nature of au-
ditory processes in human brain. Taillez et al. [22] firstly in-
vestigated whether machine learning methods can improve the
performance of AAD. Recently, CNN-based models have been
applied in AAD [23, 24, 25, 26] and demonstrated from EEG
signals collected in acoustically controlled environments with
two-talkers and without background noise. However, it is un-
clear how this performs in more realistic environments, i.e.,
with background noise.

This paper aims to investigate whether it is possible to re-
alize low latency AAD in noisy environments. We propose the
use of common spatial pattern (CSP) for EEG signal enhance-
ment under different auditory attention, and a convolutional
neural network as a classifier. Common spatial pattern [27] is a
specifically designed spatial filter that constructs very few new
time-series whose variances contain the most discriminative in-
formation. Considering that CSP is an effective method for de-
coding oscillatory EEG data and shows good performances in
some BCI systems [28, 29], we would like to study the effect of
CSP in AAD task.

The rest of the paper is organized as follows. Section 2
presents the CSP algorithm for EEG classification and the CNN
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model for AAD. Experimental setup and the results are intro-
duced in Section 3. Conclusions are drawn in Section 4.

2. Low Latency Auditory Attention
Detection

Auditory attention detection is usually formulated as a binary
classification problem in a two-speaker scenario [24, 25, 26].
Given a multi-channel EEG signal, and two single-speaker
speech streams, we hope to detect which speech stream the EEG
signal is associated with.

A typical EEG-based AAD system consists of a signal pro-
cessing front-end, that is followed by a backend classifier. Stim-
ulus reconstruction is the basic theory for EEG-based AAD, in
which cortical responses are used to approximate the envelope
of the speech stream heard by the participant, that is then com-
pared with the original speech stimulus to reveal the attended or
unattended speaker in a cocktail party scenario.

Previous studies have demonstrated that both the tempo-
ral resolution [19, 20, 30] and the acoustic scenes [23] have an
impact on the AAD accuracy. Specifically, AAD accuracy de-
pends on the length of the decision window, which means how
much EEG data are needed to make a decision. On the other
hand, noise has adverse affects on the attended speech represen-
tation in the neural responses, which leads to significant decline
in AAD performance. The previous studies prompt us to study
how to improve ADD in noisy acoustic environments and with
low latency.

To address the research problems, we propose to apply
common spatial pattern analysis to perform spatial enhance-
ment of original EEG signals, which is of low signal-to-noise
ratio. At the same time, we apply an auditory-inspired linear
filter bank and power-law compression to improve the speech
envelope extraction process. Finally, a CNN-based decoder is
developed as the binary classifier, as shown in Figure 1.

2.1. CSP for EEG Enhancement

CSP is a spatial feature enhancement algorithm for binary clas-
sification problems, which can be employed to extract spatial
distribution components of two classes [27, 28, 29]. In our
AAD method, we attempt to find an optimal spatial filter for
each subject with diagonalization calculation to project EEG
signals into a new feature space and maximize the variance be-
tween the classes. Then the features with higher discrimination
are obtained.

Suppose that we have two EEG signals for two opposite
classes of auditory attention, G1 and G2. Then G1 and G2 are
multi-channel evoked response matrix with N × T dimension,
where N is the number of channels and T is the number of sam-
ples collected from each channel. The mixed covariance matrix
with eigenvalue decomposition of the two classes is:

C = C1 + C2

=
G1G

T
1

tr(G1GT
1 )

+
G2G

T
2

tr(G2GT
2 )

= UλUT (1)

where C1 and C2 is the covariance matrices of G1 and G2, tr(·)
is sum of elements on the main diagonal of a matrix as the trace
of the matrix, λ is the a diagonal matrix of eigenvalues and U
is the corresponding eigenvector. P =

√
λ−1UT is used for

transformation to obtain the decomposition:

TM1 = PC1P
T = E1λ1E

T
1 (2)

TM2 = PC2P
T = E2λ2E

T
2 (3)

where the eigenvectors E1 and E2 of TM1 and TM2 are equal
with λ1 + λ2 = I . Then we get the projection matrix W =
ETP with the eigenvectors from the decomposition. The fea-
ture after spatial filtering can be expressed as:

F =W ×G (4)

In this way, we increase the separation between different
classes of EEG data, that is expected to improve the classifica-
tion.

2.2. CNN for Auditory Attention Detection

Convolutional neural networks (CNN) make use of ‘convolu-
tion’ and ‘pooling’ techniques to reduce a large amount of in-
put data into their essential features, and uses those features for
classification. In auditory attention detection, we build a CNN
classifier, that takes the envelopes of two speech streams and
the EEG features as the input, and decides which speech stream
is associated with the EEG features in a binary decision.

In this study, we have the 2 speech streams coming from
a male and a female speaker. The envelopes of stimulus were
sorted by gender. The male speaker’s speech envelope is always
at the top row of the input matrix, while the female stimulus
envelope is at the bottom row. As a result, the input matrix
has 66 rows (64 EEG channels and 2 stimulus envelopes), as
shown in Figure 1. The EEG data was presented in black and
the envelopes of stimulus in blue. Speaker A and Speaker B
are male and female speaker, respectively. ‘H-LP’ represents
speech processing, which is described in detail in Section 3.2.

We study two contrastive implementation, one is with CSP
analysis, that is called CSP+CNN, and another is without CSP,
that is called CNN. During training, the network is optimized to
predict the correct label, i.e. 0 or 1, that represents the attended
speaker.

We adopt the same CNN architecture for both CSP+CNN
and CNN systems. The CNN architecture includes a convolu-
tion layer [66× 9], an average pooling and two fully-connected
layers (Input:10, hidden:10, output:2). The activate function
is rectifying linear unit (ReLu) and the loss function is the
weighted cross-entropy. Considering that mapping coefficients
comprise salient peaks at a particular lag to the stimulus, a lag is
added between the stimulus envelopes and EEG data. Accord-
ing to Ding et al.[7], effects of auditory attention are most dis-
tinguishable in the M/EEG signals starting 100 post-stimulus.
Therefore, stimulus envelopes were shifted in time 7 samples
with respect to the EEG data, corresponding to a 100 ms time-
lag at the 70 Hz sampling rate. Finally, We use the SGD opti-
mization with a learning rate of 0.1 to train the networks.

3. Experiments and Results
3.1. Experimental Setup

We evaluated the methods on the ‘EEG and audio dataset for
auditory attention decoding’ dataset [31, 32], which contains
EEG signals from 18 normal-hearing subjects listening to one of
two competing speakers. 64-channel EEG was recorded using a
BioSemi ActiveTwo system (Biosemi, Amsterdam, The Nether-
lands) at a sampling rate of 512Hz. The electrodes were placed
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Figure 1: The proposed CSP+CNN network for auditory attention detection. The convolution is highlighted in red. The network is
trained to output two values, i.e. 0 and 1, to indicate the attended speaker.

on the head according to the international 10/20-standard. Two
additional electrodes were placed on the mastoids as physiolog-
ical reference signals.

Each subject listened to sixty trials in which they were pre-
sented the 50 seconds of speech mixtures and instructed to at-
tend to one particular speaker. Although silent gaps exceeding
0.5 second were truncated in some studies [8, 9, 15, 16, 23] to
minimize the fluctuation of the subjects’ attention, this dataset
did not shorten silent periods and presented more realistic
speech stimuli.

The auditory scenes comprises a male and a female simul-
taneously speaking in simulated rooms with different degrees
of reverberation. Specifically, three different types of acous-
tic condition, including no noise, mild reverberation and high
reverberation, were independently randomized across trials for
each subject. In all trials, two concurrent speech streams were
mixed with equal root-mean-square values of sound amplitude,
presented roughly at a 65 dB sound pressure level (SPL). Be-
sides these two target speakers, 6 additional speakers (3 male,
3 female) were simulated in the reverberant scenarios. The
clarity, defined as the ratio of the direct 80-ms sound energy
to the remaining energy, according to Fuglsang et al. [31],
mild reverberation ranges between C80,63Hz = 5.7dB and
C80,63Hz = 7.4dB, and high reverberation ranges between
C80,63Hz = 6.7dB and C80,63Hz = 9.7dB.

3.2. Data Processing

The first step of data processing was to filter out 50 Hz line noise
and harmonics in EEG data[33] and remove the eye artifacts
using joint decorrelation framework [34]. Then, all EEG data
was re-referenced to the average response of the mastoid elec-
trodes and subsequently filtered offline with a band-pass filter
between 2 and 32 Hz. The envelopes of the speech stimuli were
passed through a gammatone filterbank with a range of 150 to
4,000 Hz and all of the sub-bands were power-law compression
with 0.6 [9]. The speech envelope was then transformed into its
respective absolute envelope by a Hilbert transformation, low-
pass filtered with 32 Hz and downsampled from 512 Hz to 70
Hz to match the EEG data [22, 23], denoted as H-LP in Figure

1. Finally, envelopes of speech stimuli were normalized. EEG
data was also normalized for each trial and spatial filtered by
the CSP algorithm in which the training set of each subject was
used to obtain a projection matrix.

The data set was randomly split into a training set (80%)
and a validation set (10%), and a test set (10%). For all trails,
decision windows of 1s, 2s, and 5s (separate experiments) with
50% overlap were used to cut the EEG data and the envelope of
the speech stimuli into several segments. It is noted that all the
repetitions windows were discarded to keep training, validation,
and test set independent.

3.3. Experiment Results

The networks were trained in three different scenarios, no noise,
mild reverberation and high reverberation. We report the per-
formance of AAD for 3 different window sizes: 1 second, 2
seconds and 5 seconds in terms of the percentage of correctly
classified decision windows.

Generally, CSP+CNN model outperforms CNN system
with an average improvement of 9% in AAD accuracy in all
the testing scenarios. As shown in Figure 2, accuracy for 2-
second decision window was significantly different between
the CSP+CNN and CNN models (paired t-test: no noise, P <
0.001; mild reverberation, P = 0.013 and high reverberation, P
= 0.002).

We present AAD performance of CSP+CNN model among
18 subjects for 2-second decision window in three different
acoustic conditions, as shown in Figure 3. High detection accu-
racy was obtained in no noise scenario (mean:81.2%, SD:7.8%),
followed by high reverberant scenario (mean:80.8%, SD:9.3%)
and mild reverberant scenario (mean:77.6%, SD:9.5%). Differ-
ences in the AAD accuracy of different acoustic conditions were
tested for statistical significance using a paired t-test. Statisti-
cal analysis was performed using IBM SPSS statistics software
(ver. 24.0, IBM Corp., Armonk, NY, USA) and a level of sig-
nificance of 0.05 was selected. It is noted that there were no
statistical differences between the different acoustic conditions,
which is consistent with previous study[31]. This results verify
that our method can detect the attended speech stimuli accu-
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rately and remained robust in realistic acoustic environments.

Figure 2: AAD accuracy of the proposed CNN model and
CSP+CNN networks with 2-second decision window.

Figure 3: AAD accuracy for 2-second decision window among
all subjects under different acoustic conditions.

Fuglsang et al. [31] and Wong et al. [32] reported results
on the same ‘EEG and audio dataset’ with linear stimulus re-
construction model, that we use in Table 1 as a benchmarking
reference. In [31], neural response was linearly mapped to the
speech features based on temporal response functions. In [32],
the regularization technique was used to optimize the general-
izability of the linear mapping model. With 30-second of de-
cision window, the linear model achieves the accuracy of 81%
and 83% for two test conditions, while CNN+CSP achieves a
higher AAD accuracy of 86.5%. We only use the 30-second
case as a point of reference for comparison as this paper is fo-
cused on low latency AAD.

Our CSP+CNN approach achieves significant improve-
ments over the linear models in low latency AAD, which makes
our model more promising for BCI systems, such as hearing
aids. Due to different experimental setup, we can’t directly
compare with the state-of-the-art CNN models [23, 24, 25, 26].
Therefore, we re-implement the CNN with our experiment
setup and present the AAD accuracy for various decision win-
dows, from 1-second to 5-second, in high reverberant environ-
ment, as shown in Figure 4. Accuracy of both CSP+CNN and
CNN models drops as detection window size decreases, which
was observed in some previous studies [23, 25]. However, for
10 out of 18 subjects, AAD accuracy was above 80%, even for
1-second of decision window using CSP+CNN model. We also

Table 1: Auditory attention detection accuracy (%) in a com-
parative study of different models on the same ‘EEG and audio
dataset for auditory attention decoding’ dataset. Linear Model
(O) denotes the setting in [31], while Linear Model (R) denotes
the use of regularization [32].

Model Decision window
1s 2s 5s 30s

Linear model (O)[31] 52 56 65 81
Linear model (R)[32] 55 61 70 83

CNN 69.2 71.2 71.9 —
CSP+CNN 78.6 80.2 82.1 86.5

note that the accuracy of CSP+CNN is significantly higher than
CNN (paired t-test: 1-second of decision window, P = 0.001; 2-
second of decision window, P = 0.001 and 5-second of decision
window, P = 0.012).

Figure 4: AAD accuracy for different decision windows among
all subjects under high reverberant condition.

4. Conclusions
In this paper, we propose a model with combination of CSP
and CNN for auditory attention detection in real-life acoustic
environments. Experiments show that our proposed method
not only achieves the better performance than the conventional
linear model, but also outperforms the current state-of-the-art
CNN models. Moreover, we also find the the proposed network
performs well in low latency settings when operating in noisy
environments. Given that more than two target speakers might
be encountered in a cocktail party, we will explore the feasibil-
ity of our proposed model in a multi-speaker scenario.
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