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Abstract
The Fearless Steps Initiative by UTDallas-CRSS led to the dig-
itization, recovery, and diarization of 19,000 hours of original
analog audio data, as well as the development of algorithms to ex-
tract meaningful information from this multi-channel naturalistic
data resource. The 2020 FEARLESS STEPS (FS-2) Challenge
is the second annual challenge held for the Speech and Language
Technology community to motivate supervised learning algo-
rithm development for multi-party and multi-stream naturalistic
audio. In this paper, we present an overview of the challenge
sub-tasks, data, performance metrics, and lessons learned from
Phase-2 of the Fearless Steps Challenge (FS-2). We present
advancements made in FS-2 through extensive community out-
reach and feedback. We describe innovations in the challenge
corpus development, and present revised baseline results. We fi-
nally discuss the challenge outcome and general trends in system
development across both phases (Phase FS-1 Unsupervised, and
Phase FS-2 Supervised) of the challenge, and its continuation
into multi-channel challenge tasks for the upcoming Fearless
Steps Challenge Phase-3.
Index Terms: NASA Apollo 11 mission, corpus, speech activity
detection, speaker diarization, speaker identification, speech
recognition, multi-channel audio streams, diarized segments.

1. Introduction
Recent decades have seen tremendous improvements to Speech
and Language Technology (SLT) systems. This has only been
possible due to thoroughly curated speech and language corpora
that have been made publicly available [1, 2, 3, 4, 5]. The abil-
ity for systems to adapt to, and extract meaningful information
from unlabeled data using limited ground-truth knowledge is a
challenge in machine learning and AI [6, 7, 8]. Unfortunately,
there is an unlimited amount of unstructured and unsupervised
data compared to high quality human annotated data. To effec-
tively address this reality, development of solutions will require
consistent improvements to SLT systems. The initially digi-
tized 19,000 hours from the NASA Apollo-11 and Apollo-13
missions [9, 10] represent the largest naturalistic time synchro-
nized multi-channel data. This corpus will be supplemented in
continuing efforts with an additional 150,000 hours, enabling
research on the largest publicly available corpus till date. Struc-
turing this data through pipeline diarization transcripts, auto-
matic speaker/sentiment tagging, etc., will enable preservation
and archiving of historical data. These efforts will massively
increase research opportunities, and be of significant benefit
to the STEM community. As an initial step to motivate this
stream-lined and collaborative effort from the SLT community,
UTDallas-CRSS has been hosting a series of progressively com-
plex tasks to promote advanced research on naturalistic “Big
Data” corpora. This began with the “Inaugural FEARLESS

STEPS Challenge: Massive Naturalistic Audio (FS-1)”. The first
edition of this challenge encouraged the development of core
unsupervised/semi-supervised speech and language systems for
single-channel data with low resource availability, serving as the
“First Step” towards extracting high-level information from such
massive unlabeled corpora [11, 12, 13, 14, 15]. As a natural
progression following the successful inaugural FS-1 challenge,
the FEARLESS STEPS Challenge Phase-2 (FS-2) focuses on
the development of single-channel supervised learning strate-
gies. FS-2 Challenge provides 80 hours of ground-truth data
through training (Train) and development (Dev) sets, with an
additional 20 hours of blind-set evaluation (Eval) data. Based on
feedback from the Fearless Steps participants, additional tracks
for streamlined speech recognition and speaker diarization have
been included in the FS-2. To encourage diversified research
interests, participants were also encouraged to utilize the FS-2
corpus to explore additional problems dealing with naturalistic
data. The results for this challenge will be presented at the ISCA
INTERSPEECH-2020 Special Session.

2. Community Outreach & Feedback
The NASA Apollo Mission Control recordings are rich source
of time-critical team based communications. Complex commu-
nication characteristics in this corpus can be explored through
multiple avenues, and require vast resource utilization [16, 17].

Figure 1: Analysis of community feedback. (top): Participant
Breakdown (bottom): Most requested areas of interest

To ensure optimum long-term benefits of exploring this cor-
pus, feedback from researchers in multiple intersecting disci-
plines is crucial. An essential component of corpora development
following the completion of FS-1 was a focus on community

Copyright © 2020 ISCA

INTERSPEECH 2020

October 25–29, 2020, Shanghai, China

http://dx.doi.org/10.21437/Interspeech.2020-30542617



outreach and feedback. Multiple community engagement ses-
sions were conducted with an aim in gathering essential future
directions for the evolving FS Apollo corpus. The three commu-
nities directly benefiting from this corpus research and develop-
ment include: (i) Speech Processing Technology (SpchTech), (ii)
Communication Science and History (CommSciHist), and (iii)
Education/STEM, Preservation/Archives, and Community-use
(EducArch), who were consulted through workshop engage-
ments. Community engagements are illustrated in Figure 1.

2.1. Fearless Steps Workshops
User feedback was primarily collected through 6 workshops at
STEM and archival events (including IS-19, JSALT-19, ASA-19,
ASRU-19). Online surveys of researchers downloading the FS
corpus enabled access to feedback globally. A sample of the
feedback from the above mentioned communities is illustrated in
Figure 1. The salient responses across all communities focused
on availability of more labeled data for system development,
linking unstructured audio data with relevant meta-data through
robust semi-supervised SLT systems, convenient data access,
and retrieval through pipeline diarization transcripts.

2.2. Inaugural Fearless Steps (FS-1) Challenge
Over 170,000 hours of synchronized audio data were collected
by NASA during the Apollo missions. Digitizing this audio with
synchronized SLT pipeline processing would enable streamlined
information access and retrieval to all communities. Due to re-
source limitations on developing manual annotations, speech and
language systems capable of extracting meaningful information
using limited ground-truth resources are necessary. FS-1 was
designed with this premise, providing 20 hours of development
set ground-truth, and 20 hours of evaluation set for five tasks:
Speech Activity Detection (SAD), Speaker Diarization (SD),
Speaker Identification (SID), Speech Recognition (ASR), and
Sentiment Detection. These 40 hours of data was selected from
channels with comparatively lower levels of degradation. A lexi-
con and language model based on 4.2 billion NASA mission text
content was also freely provided [18, 19]. Semi-supervised and
unsupervised systems optimized for the Apollo data were used as
baseline systems [20, 21, 22, 23, 24]. These systems have been
used as benchmarks for evaluating the variability introduced in
FS-2 by an additional 60 hours of audio from highly degraded
channels.

Table 1: Comparison of baseline results for FS-1 and FS-2
evaluation sets. Evaluation Metrics for FS-1 and FS-2: SAD:
DCF (%), SID: Top-5-Acc (%), SD: DER (%), ASR: WER (%),
with Relative degradation in performance for same systems (%)

Fearless Steps System(s) Performance on Eval Set
Task FS-1 (%) FS-2 (%) Rel. Degradation (%)
SAD 11.70 13.60 16.20
SD 68.23 88.27 29.37
SID 47.00 41.70 11.27
ASR 88.42 84.05 - 4.90

With a goal to maintain competitiveness in FS-2, higher
content of degraded audio was selected to form the Eval set in
FS-2 to offset the advantage of Train set ground-truth availability.
This is detailed in Section 4.1. Table-1 provides a comparison of
baseline system performance for all tasks over the Eval sets of
FS-1 and FS-2. Significant degradation in system performance in
three out of four tasks is observed. The evaluation metrics used
for tasks SAD, SD, SID, and ASR were detection cost function
(DCF), diarization error rate (DER), top-5 accuracy (%), and

word error rate (WER) respectively [7, 25, 26].
Sentiment Detection task from FS-1 provided participants

with rudimentary labels of ‘positive’, ‘neutral’, and ‘negative’.
However, all communities expressed interest in descriptive labels
for emotion and behavioral analysis, as seen in Figure 1. Hence,
sentiment detection task was removed from FS-2, and will be
reintroduced in FS-3 as emotion detection task with 100 hours
of improved labels.

3. FS-2 Challenge Tasks
The consensus from the community on requirement of in-
creased transcribed data, and incremental task-targeted labeling
prompted focused efforts on providing more variety in core-
speech tasks. Hence, for FS-2, two separate challenge tracks
were introduced for diarization and speech recognition. The
speaker diarization track SD track2 focuses on developing robust
speaker embedding and clustering algorithms, while SD track1
caters to the more challenging task of diarization from scratch.
Equivalently, the Speech Recognition track ASR track2 focuses
on transcribing diarized speech segments (each segment con-
tains noisy speech from a single speaker), while ASR track1
incorporates the broader scope of transcribing noisy overlapped
multi-speaker continuous streams. All challenge tasks for FS-2
are given in the following list:

• TASK 1: Speech Activity Detection (SAD)

• TASK 2: Speaker Identification (SID)

• TASK 3: Speaker Diarization

◦ (3.a.) Track 1: using system SAD (SD track1)
◦ (3.b.) Track 2: using reference SAD (SD track2)

• TASK 4: Automatic Speech Recognition

◦ (4.a.) Track 1: using system SAD (ASR track1)
◦ (4.b.) Track 2: using diarized audio (ASR track2)

The evaluation metrics for all tasks are consistent with the
previous challenge, and described in Section 2.2 [26, 27, 28]. A
scoring toolkit1 was made publicly available for this challenge.

4. Corpus Re-Deployment (FS-2)
The five selected channels Flight Director (FD), Mission Opera-
tions Control Room (MOCR), Guidance Navigation and Control
(GNC), Network Controller (NTWK), and Electrical Environ-
mental and Consumables Manager (EECOM) from FS-1 were
preserved with improved labeling for FS-2. The high degree of
variability in speech and noise characteristics across these five
channels has been explored previously [1, 2, 19, 29]. In FS-2,
we introduce 60 hours of additional speech transcriptions and
speaker labels from these channels to the existing 40 hours to
provide sufficient data for supervised system training.

4.1. Data Set Selection

The Dev, and Eval sets provided through FS-1 were developed
using 70% audio streams selected from clean channels, and 30%
selected from degraded channels. The Train, Dev, and Eval sets
for FS-2 were categorized with scope to introduce multi-channel
tasks in future challenges, while maintaining progressive dif-
ficultly in verification sets. The intention behind this data set

1https://github.com/aditya-joglekar/FS02_
Scoring_Toolkit
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Figure 2: Probability Distributions of decision parameters for Train, Dev, and Eval sets.

Table 2: General statistics for the SID task. The mean, median, minimum, and maximum values
for cumulative speaker durations, and individual speaker utterances are all expressed in seconds.

Data set # Spkrs Spkr. Duration (s) Spkr. Utterances (s)
mean median (min , max) mean (min , max) total

Train 218 505.5 106.7 (6.89 , 11254.36) 4.03 (1.84 , 16.95) 27336
Dev 218 118.1 24.2 (3.13 , 2596.18) 4.04 (1.78 , 16.95) 6373
Eval 218 156.9 31.5 (3.19 , 3460.41) 4.04 (1.8 , 16.22) 8466

design was to replicate naturalistic system development pro-
cesses [5, 6, 30]. The FS-2 Challenge Corpus audio is divided
into (i) audio streams, and (ii) audio segments. Audio streams re-
flect unaltered digitized audio from the Apollo missions. Audio
segments are short duration speech sections diarized from the
audio streams. Each segment contains a continuous speech utter-
ance from a single speaker. Section 4.2 describes the process of
splitting 100 hours into Train, Dev, and Eval sets. Section 4.3
provides more insight into development of segment based tasks
SID and ASR track2.

4.2. Audio Streams

Performance of SLT systems is dependent on factors like over-
lap content present in the data, amount of unintelligible speech,
speech density variation, amount of data with unknown speakers,
etc. In addition to this, the unsupervised baseline systems are use-
ful in providing a measure of degradation in a given audio stream.
We use the term ’decision parameters’ to cumulatively describe
the above measures. Using this methodology, it is possible to
provide sets with progressive levels of difficulty across multi-
channel audio streams in spite of inter-channel variations found
in the Apollo data [1]. We perform this process by calculating all
decision parameters for 100 hours of audio streams individually.
These parameters are then normalized to generate degradation
scores across the 100 hours. These scores are time-aligned across
5 channels and averaged to provide a single degradation score
per 30-minute time chunk. These scores are finally categorized
into three sets by progressive order of degradation. 5 channel
segments with a cumulative highest degradation across all deci-

sion parameters are thus included in the Eval set, followed by
Dev set. The streams with the least performance degradation
are selected into the Train set. Trends observed from Figure 2
explain that even when the overall degradation across multiple
channels is large, due to the variances in channel characteris-
tics, the distributions for Train, Dev, and Eval sets have similar
means, but differing distributions. Such varying distributions
across decision parameters can aid in assessing the robustness of
systems and their ability to generalize to data with a high degree
of cross-channel variability.

Table 3: Duration Statistics of audio segments for ASR track2.
The mean, min, and max values are expressed in seconds.

Data set Segments Utterance Duration (s)
mean min max

Train 35,474 2.85 0.10 70.37
Dev 9,203 2.97 0.12 67.39
Eval 13,714 2.78 0.10 53.04

4.3. Audio Segments

SID task in FS-1 challenge provided 183 speakers a minimum
of 10 seconds of training data. FS-2 SID task extends this set by
adding over 30,000 additional utterances for 218 speakers. With
shorter utterance durations and larger variations in speaker dura-
tions as seen in Table-2, FS-2 provides a more challenging task
over FS-1. This data also encapsulates the challenges faced in
speaker tagging for Apollo corpora. While a few personnel had
major speaking roles, most backroom staff in the mission control
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audio recordings had limited but integral speaking roles, making
unbalanced and low resource speaker identification essential for
a real-world scenario. Table-3 illustrates the general duration
statistics of audio segments provided for the ASR track2 task.
While this task has the advantage of having fully diarized seg-
ments, the single word utterance durations shorter than 0.2 secs
pose a challenge to ASR systems.

5. Baseline Systems
The SAD, ASR, and speaker diarization baseline systems from
the first challenge were retrained and optimized for usage in this
challenge [2]. Both tracks for SD and ASR tasks were evaluated
using the same system, with differing configurations. Baseline
results for all tasks are provided in Table-4.

Table 4: Baseline Results for Development and Evaluation Sets

Fearless Steps Phase-02 Baseline Results
Task Metric Dev (%) Eval (%)
SAD DCF 12.50 13.60
SD track1 DER 79.72 88.27
SD track2 DER 68.68 67.91
SID Top-5 Acc. 75.20 72.46
ASR track1 WER 83.80 84.05
ASR track2 WER 80.50 82.23

5.1. Speaker Identification

The SID baseline system developed for FS-1 used i-Vectors for
front-end processing [23]. This system was more suited to the
FS-1 SID data since it had at least 10 seconds of speech content
per speaker. Due to the challenging nature of the current FS-2
SID data (≤4 utterances per speaker on average), this system was
rendered inadequate. Moreover, for speakers in the Apollo data,
x-Vector and i-Vector embeddings have low separability, form-
ing separate clusters for same speaker utterances from different
channels. This is illustrated with a t-SNE plot of i-Vector and
x-Vector embeddings for 140 speakers in Figure 3 [31, 32, 33].

Figure 3: Reduced dimensional i-Vector embedding (left), and
x-Vector embedding (right) t-SNE plots for 140 speakers [33]

To provide an alternate baseline system more suited to the
revised SID data, SincNet system was used [34]. Input data was
normalized and preprocessed to provide speech frames using
the rVAD system (which ranked 4th in the FS-1 SAD task) [35].
rVAD system threshold was optimized to provide strict speech
boundaries. The SincNet was trained for 360 epochs. This sys-
tem (shown in Figure 4) provided a Top-5 Accuracy of 72.46%,
which was a 30% absolute improvement over the FS-1 SID
baseline system.

6. Discussion
FS-2 Challenge concluded with 111 system submissions across
all tasks. While this was similar to the 116 system submissions
received for FS-1 challenge, participation for both tracks of SD
and ASR tasks was noticeably higher. The systems developed for

Figure 4: rVad-SincNet based SID baseline system [34, 35]

FS-2 also exhibited vast improvements in performance compared
to the best systems developed for FS-1 challenge [2, 11, 12, 13,
15], as seen in Table-5. We observed relative improvements of
67%, 57%, and 62% for SAD, Speaker Diarization from scratch,
and Speech Recognition from audio streams tasks respectively.
These top ranked systems from the community will be used to
develop baselines for the next phase of the challenge, FS-3.

Table 5: Comparison of the best systems developed for all FS-1
and FS-2 challenge tasks. Relative improvement of top-ranked
system per task in FS-2 over FS-1 is illustrated.

Comparison of Best System Submissions
Task FS-1 (%) FS-2 (%) Rel. Imp. (%)
SAD 3.31 1.07 67.67 %
SID 89.94 92.39 2.72 %
SD track1 68.23 28.85 57.71 %
SD track2 N/A 26.55 N/A
ASR track1 63.97 24.01 62.46 %
ASR track2 N/A 24.26 N/A

7. Conclusions
The FEARLESS STEPS Challenge Phases are aimed at develop-
ing robust speech and language systems for multi-party naturalis-
tic audio. FS-2 enabled the development of new state-of-the-art
supervised systems for core-speech tasks on Apollo data through
its Challenge Corpus. Train, Dev, and Eval sets compatible for
multi-channel challenges were also developed. Final Phase (FS-
3) of the Fearless Steps initiative will include single and multi-
channel core-speech tasks on the available 100 hours, and 20
hours of yet unrevealed Apollo-13 multi-channel audio (“Hous-
ton, we’ve had a problem”!). System advancements through
FS-2 have also accelerated the development of conversational
analysis and natural language understanding tasks for FS-3 like
hot-spot detection, topic summarization, and emotion detection.

8. Acknowledgements
This project was supported in part by AFRL under contract
FA8750-15-1-0205, NSF-CISE Project 1219130, and partially
by the University of Texas at Dallas from the Distinguished
University Chair in Telecommunications Engineering held by
J.H. L. Hansen. We would also like to thank Tatiana Korelsky
and the National Science Foundation (NSF) for their support
on this scientific and historical project. A special thanks to
Katelyn Foxworth (CRSS Transcription Team) for leading the
ground-truth development efforts on the FS-2 Challenge Corpus.

2620



9. References
[1] J. H. Hansen, A. Sangwan, A. Joglekar, A. E. Bulut, L. Kaushik,

and C. Yu, “Fearless Steps: Apollo-11 Corpus Advancements
for Speech Technologies from Earth to the Moon,” in Proc.
Interspeech 2018, 2018, pp. 2758–2762. [Online]. Available:
http://dx.doi.org/10.21437/Interspeech.2018-1942

[2] J. H. Hansen, A. Joglekar, M. C. Shekhar, V. Kothapally, C. Yu,
L. Kaushik, and A. Sangwan, “The 2019 Inaugural Fearless
Steps Challenge: A Giant Leap for Naturalistic Audio,” in Proc.
Interspeech 2019, 2019, pp. 1851–1855. [Online]. Available:
http://dx.doi.org/10.21437/Interspeech.2019-2301

[3] J. Carletta, “Unleashing the killer corpus: experiences in creating
the multi-everything AMI Meeting Corpus,” Language Resources
and Evaluation, vol. 41, no. 2, pp. 181–190, 2007.

[4] M. Harper, “The Automatic Speech Recognition in Reverberant
Environments (ASpIRE) challenge,” in 2015 IEEE Workshop on
Automatic Speech Recognition and Understanding (ASRU). IEEE,
2015, pp. 547–554.

[5] J. Barker, S. Watanabe, E. Vincent, and J. Trmal, “The
Fifth ’CHiME’ Speech Separation and Recognition Challenge:
Dataset, Task and Baselines,” in Proc. Interspeech 2018, 2018,
pp. 1561–1565. [Online]. Available: http://dx.doi.org/10.21437/
Interspeech.2018-1768

[6] K. Kinoshita, M. Delcroix, T. Yoshioka, T. Nakatani, E. Habets,
R. Haeb-Umbach, V. Leutnant, A. Sehr, W. Kellermann, R. Maas
et al., “The REVERB challenge: A common evaluation framework
for dereverberation and recognition of reverberant speech,” in 2013
IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics. IEEE, 2013, pp. 1–4.

[7] F. R. Byers, J. G. Fiscus, S. O. Sadjadi, G. A. Sanders, and M. A.
Przybocki, “Open Speech Analytic Technologies Pilot Evaluation
OpenSAT Pilot,” NIST, Tech. Rep., 2019.

[8] G. E. Hinton, T. J. Sejnowski, T. A. Poggio et al., Unsupervised
Learning: Foundations of Neural Computation. MIT press, 1999.

[9] A. Sangwan, L. Kaushik, C. Yu, J. H. Hansen, and D. W. Oard,
“‘Houston, We have a Solution’ : Using NASA Apollo Program to
advance Speech and Language Processing Technology.” in INTER-
SPEECH, 2013, pp. 1135–1139.

[10] “National Archives,” www.archives.gov, accessed: 2018-10-24.

[11] B. Sharma, R. K. Das, and H. Li, “Multi-level Adaptive Speech
Activity Detector for Speech in Naturalistic Environments,” Proc.
Interspeech 2019, pp. 2015–2019, 2019.

[12] A. Vafeiadis, E. Fanioudakis, I. Potamitis, K. Votis, D. Giakoumis,
D. Tzovaras, L. Chen, and R. Hamzaoui, “Two-Dimensional Con-
volutional Recurrent Neural Networks for Speech Activity Detec-
tion,” in Proc. Interspeech 2019. International Speech Communi-
cation Association, 2019.

[13] G. Deshpande, V. S. Viraraghavan, and R. Gavas, “A Successive
Difference Feature for Detecting Emotional Valence from Speech,”
in Proc. SMM19, Workshop on Speech, Music and Mind 2019,
2019, pp. 36–40.

[14] P. Fallgren, Z. Malisz, and J. Edlund, “How to annotate 100 hours
in 45 minutes,” Proc. Interspeech 2019, pp. 341–345, 2019.

[15] V. Manohar et al., “Semi-Supervised Training for Automatic
Speech Recognition,” Ph.D. dissertation, Johns Hopkins University,
2019.

[16] J. H. Hansen, A. Joglekar, A. Sangwan, and C. Yu, “Fearless
Steps: Taking the next step towards advanced speech technology
for naturalistic audio,” The Journal of the Acoustical Society of
America, vol. 146, no. 4, pp. 2956–2956, 2019.

[17] A. Joglekar and J. H. Hansen, “Fearless Steps, NASA’s first heroes:
Conversational speech analysis of the Apollo-11 mission control
personnel,” The Journal of the Acoustical Society of America, vol.
146, no. 4, pp. 2956–2956, 2019.

[18] A. Stolcke, “SRILM - an Extensible Language Modeling Toolkit,”
in Seventh international conference on spoken language processing,
2002.

[19] L. N. Kaushik, “Conversational Speech Understanding in Highly
Naturalistic Audio Streams,” Ph.D. dissertation, University of
Texas at Dallas, 2018.

[20] S. O. Sadjadi and J. H. L. Hansen, “Unsupervised Speech Activity
Detection Using Voicing Measures and Perceptual Spectral Flux,”
IEEE Signal Processing Letters, vol. 20, no. 3, pp. 197–200, March
2013.

[21] V. Kothapally and J. H. Hansen, “Speech Detection and Enhance-
ment Using Single Microphone for Distant Speech Applications in
Reverberant Environments.” in INTERSPEECH, 2017, pp. 1948–
1952.

[22] H. Dubey, A. Sangwan, and J. H. Hansen, “Robust Speaker
Clustering using Mixtures of von Mises-Fisher Distributions for
Naturalistic Audio Streams,” in Proc. Interspeech 2018, 2018,
pp. 3603–3607. [Online]. Available: http://dx.doi.org/10.21437/
Interspeech.2018-50

[23] F. Bahmaninezhad and J. H. L. Hansen, “i-Vector/PLDA speaker
Recognition using Support Vectors with Discriminant Analysis,”
in 2017 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), March 2017, pp. 5410–5414.

[24] W. Xia, J. Huang, and J. H. Hansen, “Cross-lingual Text-
independent Speaker Verification Using Unsupervised Adversarial
Discriminative Domain Adaptation,” in ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP). IEEE, 2019, pp. 5816–5820.

[25] “NIST Rich Transcription Spring 2003 Evaluation,” https://catalog.
ldc.upenn.edu/LDC2007S10, accessed: 2019-03-01.

[26] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz et al.,
“The Kaldi Speech Recognition Toolkit,” in IEEE 2011 workshop
on automatic speech recognition and understanding, no. CONF.
IEEE Signal Processing Society, 2011.
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