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Abstract
This paper describes the ASRGroup team speaker diarization
systems submitted to the TRACK 2 of the Fearless Steps Chal-
lenge Phase-2. In this system, the similarity matrix among all
segments of an audio recording was measured by Sequential
Bidirectional Long Short-term Memory Networks (Bi-LSTM),
and a clustering scheme based on Density Peak Cluster Algo-
rithm (DPCA) was proposed to clustering the segments. The
system was compared with the Kaldi Toolkit diarization sys-
tem (x-vector based on TDNN with PLDA scoring model) and
the Spectral system (similarity based on Bi-LSTM with Spec-
tral clustering algorithm). Experiments show that our system is
significantly outperforms above systems and achieves a Diariza-
tion Error Rate (DER) of 42.75% and 39.52% respectively on
the Dev dataset and Eval dataset of TRACK 2 (Fearless Steps
Challenge Phase-2). Compared with the baseline Kaldi Toolkit
diarization system and Spectral Clustering algorithm with Bi-
LSTM similarity models, the DER of our system is absolutely
reduced 4.64%, 1.84% and 8.85%, 7.57% respectively on the
two datasets.
Index Terms: speaker diarization, speaker cluster, Density
Peak Clustering algorithm

1. Introduction
Speaker diarization is the task of identifying who spoke when?
in a multi-talker speech recording. It is an important module for
a wide variety of applications such as information retrieval from
broadcast news, rich transcription for automatic speech recog-
nition (ASR) systems. But diarization is challenging when the
speech recording contains unknown number of speakers with
variable speech duration, short conversational turns, overlapped
speech, noise and reverberation [1, 2, 3].

Most common systems have following five components:(i)
a voice activity detector (VAD) [4] is used to removes non-
speech regions from the speech recording [5, 6]; (ii) speaker
change detection/segmentation [7, 8]; (iii) speaker embedding
extraction; (iv) speaker clustering; (v) resegmentation.

For the embedding extraction module, recent work has
shown that the diarization performance can be significantly im-
proved by replacing i-vectors [9, 10, 11] with neutral network
embeddings, such as d-vectors [12, 13], or x-vectors [14, 15].
So, in our system, we employed x-vectors as our speaker em-
beddings. In speaker diarization system, speaker clustering
module is another important module. There are many cluster-
ing algorithms have been employed for diarization system, such
as bottom-up agglomerative hierarchical clustering (AHC) [16],
Cosine K-means [17], top-down approach [18], PLDA i-vector
scoring [19], Spectral clustering coupled with Bi-LSTM sim-
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Figure 1: The data flow of our proposed diarization system.

ilarity models [20, 21]. In our system, we proposed Density
Peak Clustering Algorithm (DPCA) as our clustering module.

DPCA was proposed by Alex Rodriguez and Alessandro
laio in Science 2014 [22]. The main idea of this algorithm is
to find the high density region which is separated by the low
density region. Similarly, DPCA is also based on the assump-
tion that: (i) the local density of the center point of the cluster
is higher than that of the neighbor point; (ii) The distance be-
tween the center point of cluster with the higher density point
is relatively large. The algorithm spends most of its execution
time on calculating the local density and the separation distance
for each data point in the dataset. This nonparametric algorithm
is applicable to any shape of dataset, especially non-spherical
datasets, and the algorithm result is not sensitive to parameter
selection. DPCA is an unsupervised clustering method, which
is suitable for the scenario of unknown number of speakers. But
the selection of clustering center points needs to be taken man-
ually, which limits its application in large-scale data sets. Our
system propose a modified DPCA method to select clustering
centers automatically. First, we use x-vectors of all segments
to measure the similarity matrix among all segments. Then, we
translate the similarity matrix into a distance matrix. Finally,
the proposed DPCA method is applied on the distance matrix
to further improve the performance. Since the second Fearless
Steps Challenge Phase-2 provides a development dataset in di-
verse and challenging acoustic conditions [23, 24], we use this
dataset to test the performance of our system, Experimental re-
sults show that the diarization error rate (DER) is significantly
decreased by the proposed method.

2. Speaker Diarization System
In our system, an oracle VAD is employed to remove non-
speech regions in audios. This section provides a description
of the main steps of our system. The over data flow of our di-
arization system is shown in Figure 1. we will describe all the
methods we have experimented with and compare the perfor-
mance with various combinations of modules.
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2.1. Feature Extraction

x-vector is proposed in paper [25], which is used to describe
the embedding features extracted from time-delay neural net-
work (TDNN). First, 23 dimensional MFCC are extracted from
raw audio signal (8000 Hz) with 25ms frame-length and 15ms
overlap. Second, MFCCs are fed into a TDNN for supervised
learning. Finally, In the TDNN architecture, speaker embed-
dings are extracted from the affine layer on top of the statistics
pooling layer of the classifier network.

2.2. Probabilistic Linear Discriminant Analysis

Probabilistic linear discriminant analysis (PLDA) [26, 27] has
been successfully used in speaker recognition to measure the
similarity between two speakers. It assumes that each speaker
embedding xi is modeled as:

xi =mu + V yi + ξi

ξ ∼ N(0, I)

ξ ∼ N((0,Σ)

(1)

where mu is the means of embeddings, V is the matrix
which referred to as eigenvoices, yi is the speaker dependent
latent variable with a Normal distribution N(0, I), ξi denotes
the normally distributed residual noise with zero mean and full
covariance matrix. Expectation-maximization (EM) algorithm
is used to estimate the parameters of the PLDA model [26, 27]

2.3. Similarity Measurement with LSTM

Speaker similarity measurement with LSTM was proposed by
Lin [20]. In a similarity matrix S, the values are means whether
each segment pair is from the same speaker. Each row of the
matrix was predicted by a stacked Bi-LSTM using the binary
cross entropy (BCE) loss function. x-vectors xi and xj are cate-
nated as the 2d-dimensional input [xT

i , xT
j ]T , where the corre-

sponding output is Sij . The ith row of similarity matrix S can
be described as follows:

Si = [Si1, Si2, ...Sin] = flstm

([
xTi
xT1

]
,

[
xTi
xT2

]
...

[
xTi
xTn

])
(2)

where xi is the speaker embedding of ith audio segment. The
architecture of the neural networks includes two Bi-LSTM lay-
ers, followed by two fully connected layers. Both of the Bi-
LSTM layers have 512 outputs (256 forward and 256 back-
ward). The first fully connected layer is 64-dimensional with
the ReLU activation function. The second fully connected layer
is 1-dimentional with a sigmoid function to output a similarity
score.

2.4. AHC-clustering

AHC clustering is a method of cluster analysis which seeks
to build a hierarchy of clusters [16], Strategies for hierarchical
clustering can be described as following steps:

1. Each segment is initialized as a single cluster, and
calculate the minimum distance between all clusters.

2. Merge the two classes with the smallest distance into a
new class, and update distances of clusters to the new
cluster.

3. Repeat the previous step until the specified number of
clusters has been obtained.

2.5. Spectral Clustering

In Spectral clustering (SC) [20, 21], the segments are treated
as nodes of a graph. Then, clustering is treated as a graph par-
tioning problem. The nodes are mapped into a low-dimensional
space which can be easily segregated to form clusters. Strate-
gies for SC can be described as below:

1. Input Matrix: Given similarity matrix S which each
element is the similarity between two segments and set
diagonal elements to 0.

2. Symmetrization: Yi,j = max(Sij , Sji)

3. Diffusion: Y ← YYT

4. Normalization: Sij = Yij /maxkYik

5. Get Laplacian matrix by the following formula:

di =

N∑
n=1

aik

Dc = diag{d1, d2, ..., dN}
Lc =Dc − S

(3)

6. Perform Singular Value Decomposition (SVD):
Compute eigenvalues and eigenvectors of Lc

7. Create an eigen gap vector and find the argument max
of the vector ec

ec = [λ2 − λ1, λ3 − λ2, ....λN − λN−1]

ns = min(argmax(ec), Ns)
(4)

where we can cap the maximum speaker number Ns.

8. Take the ns smallest eigenvalues λ1,λ2,...λns and
corresponding eigenvectors. For all segments, these
eigenvectors are considered as ns dimensional Spectral
embeddings. Spectral embeddings are then clustered by
K-means clustering algorithm.

2.6. Proposed Density Peak Clustering algorithm (DPCA)

Density Peak Clustering algorithm [22] is a new density-based
clustering method. The advantage of this method is that it can
detect non-convex clusters and outliers. The main idea of this
method is to find the high density regions which was separated
by low density regions. The algorithm is based on these as-
sumptions: (1) The density of the center of a cluster is higher
than its neighbors; (2) The distance between the center point of
cluster and the higher density point is relatively large.

ρi =
∑
xj∈U

χ(dist(xi, xj)− dc)

χ(x) =

{
1 x ≤ 0

0 x > 0

(5)

where dc is a cutoff distance, and often set as 2% of the data
size [22]. ρi is equal to the number of points that are closer
than dc to point i. The algorithm is sensitive only to the relative
magnitude of ρi, which means that, for large data sets, the result
of the analysis is robust with respect to the choice of dc.

θi =

{
min(dij) ρj > ρi

max(dij) ρj ≤ ρi
(6)

2603



Figure 2: Decision Graph.

where θi is the cluster center distance. The formula (6) denotes
that: (1) when the density of the point is not the largest of all
points, then the point is not the center point, the distance will be
set as the distance between the point and its nearest point; (2)
when the density of the point is the largest of all points, then the
point is the center point, the distance will be set as the distance
between the point and its farthest point. when ρ and θ of each
data are calculated, each point xi is depicted on a decision graph
by using (ρ[i], θ[i]) as its x-y coordinate as shown in Figure
2. By observing the decision graph, the cluster centers can be
identified in the top region since they are with relatively large
ρ[i] and large θ[i] [22].

Algorithm 1 Transforming similarity matrix into distance ma-
trix
Require:

The similarity matrix between all segment, S[n][n]

Ensure:
The distance matrix between all segment, DS[n][n]
for i← 1 to n do

for j ← i to n do
S[i][j] = max(S[i][j], S[j][i]);
S[j][i] = max(S[i][j], S[j][i]);

end for
end for
for i← 1 to n do

for j ← i to n do
if i == j then

sv = S[i][j];
continue;

end if
DS[i][j] = S[i][j] * -1 + sv;

end for
end for

In our system, first, we translate the similarity matrix S to
the distance matrix DS by using Algorithm 1 and calculate the
ρ and θ of each segment. Second, when the ρ and θ are calcu-
lated, we set γi = ρi ∗ θi and sort the γ in a descending order,
then find the postion index k of the largest gap in the descend-
ing queue. The index k is the cluster number, the points before
index k in the descending order are cluster centers. Finally, we

use the DPCA algorithm on top of the DS to clustering segments
goes as Algorithm 2.

Algorithm 2 DPCA Clustering algorithm

Require:
Distance matrix, S[n][n]
cut-off distance, dc
The maximum number of cluster centers, ns

Ensure:
The local density, ρ[]
The dependent cluster center distance, θ[]
The point-cluster assignment cluster, label[]
The cluster number of the data, nspk

for i← 1 to n do
ρ[i]← calculate ρ[i] by equation (5) based on S and dc;

end for
ρ = SortDecend(ρ) //sort the ρ in a descending order;
θ[]← calculate each θ by equation (6) based on ρ

for i← 1 to n do
γ[i] = ρ[i] * θ[i];

end for
γ = SortDecend(γ) //sort the γ in a descending order;
γsub = maximum(γ,ns) //obtaining previous ns values of γ;
for i← 1 to ns do

k[i] = γsub[i+ 1] / γsub[i];
end for
nspk = Arg(Max(k[i])); // index of maximum value
for i← 1 to nspk do

//obtainning the cluster centers
Centers[]← The index of data point corresponding γ[i]

end for
//assign points to each cluster based on ρ[], θ[] and Centers[]
cluster[]← assign points to clusters

3. Experimental Results
In this section, we will compare our proposed system with two
baseline systems in the TRACK 2 dataset of Fearless Steps
Challenge Phase-2 [23, 24]. The experiment results show that
the performance of our proposed system is better than the other
systems.

3.1. Data

In our proposed system, models for extracting x-vectors are
trained on a collection of SRE-database including SRE 2004,
2005, 2006, 2008 and Switchboard. All recordings are sampled
at 8 kHz. Augmented data was generated by Kaldi Toolkit [28]
using the MUSAN and RIR datasets1. The reason for this pro-
cess is to simulate the distortions typical to far-field microphone
under noisy environments. Reverberation was also performed
using the impulse response generator based on [29].

The TRACK 2 dataset of Fearless Steps Challenge Phase-
2 includes three datasets: Train dataset, Dev dataset and Eval
dataset. The Train dataset consists of 125 audio streams each
of length 30 minutes with the number of speakers ranging from
4 to 61. The Dev dataset consists of 30 audio streams each of
length 30 minutes with the number of speakers ranging from 7

1http://www.openslr.org
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Table 1: TRACK 2: Reference SAD, FEARLESS STEPS CHALLENGE Dataset

Systems (0) (1) (2) (3)

Embedding Extraction — x-vector x-vector x-vector
Distance Measure — PLDA Bi-LSTM Bi-LSTM

Clustering Algorithm — AHC Spectral DPCA

DER:Dev Set 68.68% 47.39% 44.59% 42.75%
DER:Eval Se 67.91% 48.37% 47.09% 39.52%

to 61. All these datasets are comprised of three mission criti-
cal stages from the NASA’s Apollo-11 mission, and most of the
audios are suffer from a wide range of issues like high channel
noise, system noise, attenuated signal bandwidth, transmission
noise, cosmic noise, etc. In our system, the Bi-LSTM model
and PLDA were trained on the Train dataset. The Dev dataset
and Eval dataset were used to test the performance of our sys-
tem.

3.2. Performance metric

The system performance was evaluated in terms of Diariza-
tion Error Rate(DER), as defined by NIST [30]. DER includes
three components: false alarm (FA), missed detection (Miss),
and speaker confusion, The FA and Miss are caused by Speech
Activity Detection (SAD). It is common not to evaluate short
collars centered on each speech turn boundary (0.25s on both
sides). The scoring script of evaluation is provided by the Fear-
less Steps Challenge organizers [23, 24]. Since the TRACK 2
provides the ground truth labels for SAD for each audio file, we
exclude FA and Miss from evaluations.

3.3. Baseline system

We compare our system with two baselines. The first baseline
is based on x-vector using PLDA similarity measurement and
AHC clustering algorithm. The second baseline is based on
x-vectors using Bi-LSTM similarity models and Spectral clus-
tering algorithm.

3.4. Implementation details

1. Speech segmentation: All experiments share the same
segmentation. Each audio with ground truth labels for
SAD are segmented into sub-segments with length 1.5s
and overlap 0.25s.

2. x-vector extraction: 23 dimensional MFCCs are ex-
tracted from each subsegment and followed by cepstral
mean normalization. The whole process of x-vector ex-
traction is described in [25].

3.5. Results & Discussions

Table 1 represents the DER of our system and two baseline sys-
tems on the Dev dataset of TRACK 2. It should be note that
the baseline Kaldi Toolkit diarization system (x-vector based
on TDNN with PLDA scoring model and AHC clustering) cor-
responds to system (1) and the baseline of Fearless Steps chal-
lenge organizer corresponds to system (0).

In the system (1), the best stop threshold of AHC algorithm
was obtained by training on the Train dataset of TRACK 2. As
the result shows in Table 1, it achieves DER = 47.39%. The
result shows that the AHC clustering algorithm is not working

well on the dataset. This is due to the fact that the Dev dataset
of TRACK 2 is very diverse and complex, while PLDA is not
suitable to measure the similarity between long segments and
short segments of different speakers, as it ignores the contextual
information of segments.

As Bi-LSTM takes full advantage from forward and back-
ward sequences, we introduce it into system (2) and using Spec-
tral clustering algorithm to cluster segments, as it can judge the
number of speakers automatically. The result in Table 1 shows
that the system (2) achieves DER = 44.59%, with DER 2.8%
absolute decreases than system (1) on the Dev dataset. This is
due to the fact that with sufficient training data, the similarity
between two segments which measured by Bi-LSTM is robust
against varing scenarios.

But Spectral clustering is more suitable for the problem
of balanced classification, which means that the number of
segments among clusters are with little differences. So, the
Spectral clustering algorithm is not suitable for the TRACK 2
dataset, while the speech duration of each speaker varies greatly
in the audio. As DPCA algorithm is applicable to any shape
of dataset, especially non-spherical datasets, and the algorithm
result is not sensitive to parameter selection, we introduce it
into our system and propose a simple method to select cluster-
ing centers automatically. The best threshold of dc in our sys-
tem was obtained by training on the Train dataset of TRACK
2. The result in Table 1 shows that the system (3) achieves
DER = 42.75%, with DER 1.84% absolute decreases than sys-
tem (2) on the Dev dataset. By comparing the cluster results
of system (1), system (2), and system (3), we found that some
short segments of the speaker in system (3) were correctly clas-
sified. The reason that DPCA clustering algorithm is better than
Spectral clustering algorithm is that it is able to map data with
arbitrary dimension onto a 2-dimentional space, and construct
hierarchical relationship for all data points on the new reduction
space.

4. Conclusions
In this paper, we introduce the Density Peak Clustering Algo-
rithm into our system and present using a simple method to
judge the number of speakers automatically. As Density Peak
Clustering Algorithm can detect non-convex clusters, and can
obtain the clusters in a single step regardless of the shape and
dimensionality of the space, The DER of our system achieves
4.64%, 1.84% and 8.85%, 7.57% absolute decreases on the Dev
and Eval dataset respectively compared with the Kaldi Toolkit
diarization system and the Spectral algorithm with Bi-LSTM
similarity models.
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