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Abstract

Speech activity detection (SAD), which often rests on the fact
that the noise is “more” stationary than speech, is particularly
challenging in non-stationary environments, because the time
variance of the acoustic scene makes it difficult to discriminate
speech from noise. We propose two approaches to SAD, where
one is based on statistical signal processing, while the other
utilizes neural networks. The former employs sophisticated
signal processing to track the noise and speech energies and is
meant to support the case for a resource efficient, unsupervised
signal processing approach. The latter introduces a recurrent
network layer that operates on short segments of the input speech
to do temporal smoothing in the presence of non-stationary noise.
The systems are tested on the Fearless Steps challenge database,
which consists of the transmission data from the Apollo-11 space
mission. The statistical SAD achieves comparable detection
performance to earlier proposed neural network based SADs,
while the neural network based approach leads to a decision cost
function of 1.07% on the evaluation set of the 2020 Fearless
Steps Challenge, which sets a new state of the art.
Index Terms: voice activity detection, speech activity detection,
neural network, statistical speech processing

1. Introduction
Speech activity detection (SAD) is an integral part of many
speech processing pipelines. For example, it is used to define
speech on/offsets for diarization [1, 2], to reduce the compu-
tational effort of speech recognition systems by specifying the
temporal regions for automatic speech recognition (ASR) de-
coding [3, 4], or to support noise power estimation in speech
enhancement algorithms [5]. Indeed, SAD has been the focus of
research efforts for years [6, 7, 8, 9].

Traditionally, SAD is formulated as a statistical hypothesis
test employing probabilistic models, such as Gaussians, mixtures
of Gaussians, or Laplacian distributions [6, 10, 11, 12]. During
the last decade, however, deep neural networks (DNNs) have
achieved impressive results on some of the more taxing SAD
tasks, outperforming the traditional approaches [8, 13, 14]. Here,
SAD is formulated as a supervised learning problem by present-
ing the speech signal at the network’s input and the class labels
(speech / no speech) as training targets at the output.

One of these challenging tasks is the SAD on the trans-
mission data from the Apollo-11 mission which is one of the
objectives of the Fearless Steps challenge [15]. The signals are
degraded due to high channel noise, system noise, attenuated
signal bandwidth, analog tape ageing, etc.. Furthermore, the
noise conditions and signal-to-noise ratios change rapidly over
time and channels. Many characteristics of these signals can also
be observed in analog speech transmission over High Frequency
(HF) radio bands.

In the 2019 edition of the challenge, the top performing neu-
ral network-based system achieved a 66.4% improvement over
the baseline system [14]. The latter consisted of two Gaussian
mixture models (GMMs) applied to the one-dimensional prin-
cipal component analysis (PCA) of a concatenation of multiple
high dimensional noise robust features [12]. The neural network,
on the contrary, consisted of several convolutional neural net-
work (CNN) layers with subsequent recursive neural network
(RNN) layers to exploit temporal information, and employed
majority voting on the output of multiple networks. Additionally,
a post filter was used to smooth unwanted oscillations in the
network’s decisions over time.

One should note, however, that the baseline GMM system
is rather simplistic. If one used more sophisticated signal pro-
cessing techniques one should be able to come closer to the
performance of the neural network while still requiring consid-
erably less computational and memory resources. To show that
this is indeed possible, we present a statistical SAD, which com-
bines multi-layer minimum statistics-based noise estimation and
Wiener filter-based enhancement, followed by an energy-based
SAD. We show that the presented statistical SAD achieves com-
petitive results compared to those published previously on the
Fearless Steps dataset [16, 17], thereby closing the gap between
statistical [12, 16] and neural network based SAD [14, 17].

Additionally, we propose an improved neural network based
SAD which achieves even better results. It is a CNN-based
system inspired by the latest advances in sound event detection
[18]. The network topology is similar to the one in [14]. But
unlike that system, we introduce a segment RNN which conducts
temporal smoothing inside the network rather than by a postfilter.
The segment RNN operates on a fixed segmentation of the input
signal to control the context observed by the RNN. This is differ-
ent from other layer types like the hierarchical multiscale RNN
[19] and the RNN-based approach presented in [20], which have
to learn the segmentation in addition to the segment labeling.

Furthermore, the network calculates multiple predictions
per time frame, which are subsequently aggregated. However,
instead of using different temporal context lengths as in [21], we
aggregate information from different segments with overlapping
input frames after the RNN layer for an automatic smoothing.
We show that the segment RNN outperforms all previously pub-
lished results on the fearless dataset w.r.t. the decision cost
function (DCF) measure.

The remainder of this paper is structured as follows. In Sec-
tion 2 the statistical SAD, and in Section 3 the neural network-
based SAD system is introduced. Section 4 includes an evalua-
tion of the two systems on the Fearless Steps challenge dataset.

2. Statistical SAD
The proposed statistical SAD is following the idea of [22] to
conduct a two-stage processing: In the first stage denoising is
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Figure 1: Overview on statistical SAD components and signal
processing queue.

carried out, and in the second stage a time domain energy crite-
rion is applied to decide on speech activity. Although this SAD
works reliably for signals with medium (≥ 5 dB) signal to noise
ratios (SNRs) and stationary noise conditions, it fails for the
highly non-stationary noise of the Fearless dataset for multiple
reasons: The recordings exhibit a large variety of different and
changing noise types, and they have much lower SNR values.
Additionally, the signal magnitude of the active speakers varies
by several orders of magnitude, even in the same recording, mak-
ing it difficult to decide whether the noise floor or a speaker with
low energy signals is observed.

Our approach is depicted in fig. 1: It consists of repeated
application of a denoising stage (fig. 1, green blocks), high-
pass and linear predictive coding (LPC) filtering (fig. 1, yellow
blocks), and the statistical SAD (fig. 1, orange blocks). Each
block is described in the following.

As input to the statistical SAD we choose the short time
Fourier transform (STFT)-coefficients of the observed signal
Xt,f with t ∈ [0, T ] as the frame index and f ∈ [0, F ] as the
frequency bin index. From these coefficients, the minimum
statistics based noise power spectral density (PSD) estimate
|V (t, f)|2, and |X(t, f)|2, i.e., the PSD estimate of the current
analysis window, are calculated and the corresponding Wiener
filter W (t, f) is given by:

W (t, f) = max

(
1− γ |V (t, f)|2

|X(t, f)|2 , Gmin

)
(1)

The oversubtraction factor γ is chosen relatively high, γ > 20,
to compensate for the bias of underestimating the noise level via
minimum statistics and to force the Wiener Filter to aggressively
apply noise reduction. Furthermore, W (t, f) is lower bounded
by Gmin to prevent W (t, f) from becoming negative in case of
low noise levels co-occuring with speech absence in the same
bin. Noise tracking and Wiener filtering iterate multiple times
over the audio signal, decreasing the noise level in each iteration
and at the same time keeping the maximum peaks corresponding
to speech untouched. Thereby, the SNR is improved with each
stage, however, at the cost of deteriorating the audio quality.
Since neither a low number of acoustic artifacts (e.g., musical
tones), nor superior speech quality are of interest here, this loss
is acceptable.

After the denoising stage, a linear highpass filter is applied
to remove low frequency noise. Furthermore, a simple 1st-order
LPC filter is employed to enhance the well predictable speech
signals and to suppress the unpredictable noise.

From the enhanced audio signal the energy per sub-band
is calculated, where each sub-band has a bandwidth of 1 kHz.
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Figure 2: Input signal (left) and processed signal (right).

Temporal smoothing with an averaging window of size 0.48 s
reduces the sub-band energy variance. Afterwards, the smoothed
sub-band energies are weighted with an exponential decay factor
(1/s for the sth sub-band) and accumulated to a single value per
frame, called combined sub-band energy (CSBE)(t).

2.1. Adaptive threshold

The CSBE values are the basic information source for deciding
whether an active speaker or just noise is observed. However,
finding an optimal decision threshold is a nontrivial task. Further-
more, the resulting threshold may be dependent on the dataset.
In order to circumvent a fixed threshold, minimum statistics is
applied once more. This time, the CSBE values are tracked to
find the floor values (F-CSBE), which belong to the non-speech
parts of the recordings. Additionally, the mean of all F-CSBE
values for each recording can be calculated to get the average
CSBE floor value (A-CSBE), i.e., an estimate for the average
noise level of the recording. A frame is marked as speech if
CSBE exceeds the sum of F-CSBE and A-CSBE by a certain
factor.

The described minimum tracking approach delivers an initial
estimate of speech activity, but it shows a high sensitivity towards
the chosen threshold. To overcome this issue, a statistical model
in the log-domain is established. As depicted in fig. 3, the
logarithm of the CSBE values is taken and all values smaller
than the noise threshold are considered to be caused by noise and
thus used to estimate a GMM representing noise components.
Similarly, values larger than the chosen speech threshold are
considered speech and used to estimate a GMM for speech. The
thresholds for speech and noise are derived from the A-CSBE
value, adding some additional safety margins.

The final decision of the statistical SAD is derived with a
Viterbi decoder operating on an hidden Markov model (HMM)
which consists of 5 consecutive states for noise and 5 states for
speech, each with probability of 0.9 for staying in the state and
0.1 for state switching. The HMM emission probabilities are
given by the aforementioned GMMs.

3. Neural Network-Based SAD
The neural network architecture is adapted from [18] and con-
sists of multiple CNN blocks with subsequent layers for temporal
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Figure 3: Histogram of logarithmic CSBE values with noise and
speech GMM models.
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Figure 4: Block diagram of the DNN model used for SAD, where
R symbolizes the output size of the temporal layer.

smoothing, an output activation and max pooling over the feature
dimension. Each CNN block consist of two 2D-CNN layers with
a 3x3 kernel and a subsequent batch normalization, followed by
a single max pooling layer of stride 4 which operates along the
feature dimension. In contrast to [18], no pooling along the time
dimension is applied to ensure frame-wise outputs. To exploit
temporal information, we either use a 1D-CNN structure as in
[18] or an RNN layer with a bidirectional gated recurrent unit
(GRU) [23] and a subsequent feed-forward (FF) layer as classi-
fier to enable the network to use a larger context. The described
network structure is shown in fig. 4 and table 1 compares the
two options for gathering temporal information.

To enforce temporal smoothing, the common approach is to
use Viterbi decoding on an HMM with GMMs emission distri-
butions to model speech and noise statistics, as described in the
previous section. However, the smoothing can also be done by
the DNN or, more specifically, by the temporal layer. Therefore,
we propose a segment RNN as replacement for the temporal
layer where each input utterance is segmented into M overlap-
ping chunks of length L with a shift S between segments as
outlined in fig. 5. Each segment is processed by an RNN with
subsequent classifier layer as specified in table 1. The parame-
ters are shared between the layers to ensure that all segments are
processed equally. For each segment only the last output frame is
chosen as the prediction for the whole segment. Speech activity
is assumed for a segment i if the estimated output yi exceeds

a certain threshold α: di =

{
1 if yi > α

0 if yi ≤ α
. Finally, speech

presence is declared for a given frame if at least one segment
containing that frame indicates speech presence. Thereby, the
occurrence of oscillations in the decision signal is reduced at the
cost of overestimating the speech activity. Since the segment
length L and shift S are fixed, the segment RNN approach may
lead to a higher hit rate while also increasing the false alarm rate.
However, in most applications a high true positive rate (TPR) is
more important than a low false positive rate (FPR). For example,
in case of ASR an overestimation of the length of speech activity
is not as harmful as missing part of an utterance. The shift S

Table 1: Comparison of two possible layer structures for the
temporal layer where FF represents a feed forward layer.

Layer type #Layer Params Classifier

1D-CNN 2 3x1 Kernel / (128,10)ch –
RNN 1 BI-GRU: 64x256 FF: 256x10
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Figure 5: Example of the segment RNN

allows for a complexity reduction since a larger value reduces
the number of segments and thus the number of chunks to be
processed by the RNN. However, increasing S also reduces the
overlap between segments and thereby the number of segments
contributing to the activity estimation for each frame. Changes
in the segment length L, control the temporal context seen by
the RNN layer.

For training, the 30min streams are divided randomly into
4 s segments which are independently sent through the network,
This prevents overfitting since it ensures that all possible speech-
silence-ratios are observed during training. As cost function the
binary cross entropy is chosen.

4. Evaluation
The presented SAD systems are tuned on the development set of
the fearless dataset [15]. As metrics we use precision (P ), recall
(R), F1-score= 2 P ·R

P+R
and DCF with

P =
TP

TP + FP
, (2) R =

TP

TP + FN
, (3)

DCF = 0.75 · FN

TP + FN
+ 0.25 · FP

TN+ FP
, (4)

where TP, FP, TN and FN are the number of true positive, false
positive, true negative and false negative predictions. The scoring
is done with the openSAD evaluation tool [24].

4.1. Fearless Steps Dataset

The Fearless Steps dataset [15] consists of 8 kHz recordings
from the Apollo 11 mission. The part of the Fearless Steps
dataset used during this challenge for training and development
consists of 290 speakers with an SNR between 0 dB and 20 dB.
Note, that the development set includes 34 unique speakers not
seen during training. All examples are 30min long, and the
training set consists of 29.56% of speech on average, whereas
the development set includes an average of 32.87% of speech.
The main challenges of the dataset are, first, that speech activity
is typically very short, consisting of one or two words only, and,
second, that the noise is highly non-stationary with varying SNR.
If not stated otherwise, all experiments are carried out on the
development set.
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Figure 6: Comparison of the CNN and RNN temporal layer with
median filter or HMM-based smoothing

4.2. DNN tuning

The input to the DNN is the magnitude spectrum obtained from
an STFT with an FFT size of 512 samples, a window length of
50ms and a frame shift of 10ms. All networks were trained for
50000 iterations with a batch size of 24 and a learning rate of
0.001 using the Adam optimizer [25].

In fig. 6, the DCF is displayed as a function of the decision
threshold α for the first two temporal layer variants described
in section 3. According to the figure, RNN and the 1D-CNN
achieve similar results with a small edge for the 1D-CNN. In
both cases, the threshold can be chosen in a fairly large range
without a substantial impact on the performance.

Additionally, two types of temporal smoothing are com-
pared: On one hand, HMM-based smoothing described in sec-
tion 2 and, on the other hand, a median filter with a fixed window
length. It can be observed that the HMM-based approach outper-
forms the median filter for both the RNN and CNN layer.

In fig. 7, the DCF values achieved with the segment RNN
as temporal layer are plotted for different shifts S and lengths L.
For each S and L the individual optimal threshold α is chosen.
The results are compared to the previously best presented system,
the CNN+HMM. It is apparent that the segment RNN clearly
outperforms the CNN+HMM SAD estimation for short segment
length L. All results with L ≤ 250ms and S ≤ 150ms achieve
at least a small gain compared to the CNN temporal layer with
HMM smoothing. Reducing the shift and length in the segment
RNN to 10ms and 50ms which equals 1 and 5 frames respec-
tively, results in the lowest DCF. A possible explanation is the
non-stationarity of the distortions and that the high overlap be-
tween segments due to the small shift successfully smooths the
network output.

4.3. System comparison

In table 2 the results for all systems tuned to their optimal thresh-
old are shown. The presented statistical SAD achieves a DCF
of 2.98% and thus an improvement of 9.52% over the chal-
lenge baseline in terms of absolute numbers. In comparison, the
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Figure 7: DCF results for the segment RNN with different shifts
S and segment lengthL for the respective optimal threshold. The
red line symbolizes the DCF value for the CNN+HMM system.

Table 2: Results for all presented systems for different metrics in
% on the Dev and Eval set for the Fearless Steps SAD Challenge.

DEV EVAL
System F1 P R DCF DCF

Stat. SAD 94.32 90.94 97.97 2.98 4.60
CNN + HMM 97.91 96.83 99.02 1.42 2.45
RNN + HMM 97.84 96.85 98.85 1.54 2.17
Seg. RNN 98.62 97.42 99.85 0.81 1.19
Baseline – – – 12.50 13.60

neural network-based approaches achieve a DCF of 1.42% and
1.54% with a CNN and RNN as temporal layer, respectively.
However, the segment RNN temporal layer outperforms all other
approaches achieving a DCF of 0.81%. The high precision P
indicates that a small segment length L and shift S allows to
increase the hit rate without causing an higher false alarm rate.
The results achieved on the evaluation dataset are similar to the
ones observed on the development data for both the DNN-based
and statistical SAD. Indicating, that the systems are robust to
small changes in the data. Using majority voting on the output
of all neural networks in table 2 we get a DCF of 1.07% which
is the best submitted SAD result during the 2020 Fearless Steps
Challenge but only a slight improvement over the single model
with a segment RNN temporal layer.

The two proposed approaches differ in many aspects, e.g.
their type of signal processing or their implementations. In
table 3 a comparison between the systems in terms of processing
time is stated. Please note that the table shows results for systems
which are implemented on different tool chains, and that further
optimizations on the code may improve the realtime factors. The
table shows that all systems allow real time processing.

Although the statistical SAD achieves worse detection rates
than the DNN-based method presented here, the approach is
interesting because it has a lower real-time factor and because
it is an unsupervised learning approach not requiring labeled
training data. Arguably, this makes it easier to adapt the system
to other data sets.

5. Conclusions
This paper proposes a new statistical SAD which achieves com-
petitive results compared to other DNN-based systems. Fur-
thermore, a new DNN-based SAD with a segment RNN-based
smoothing is presented which allows to define the context ob-
served by the RNN. This single system approach achieves a DCF
value of 1.19% which is the second best result submitted to the
2020 Fearless Steps Challenge and is only slightly outperformed
by a majority voting between a combination of the proposed
DNN architectures (DCF: 1.07%). Hereby, the majority voting
results are the best submitted to the 2020 Fearless Steps Chal-
lenge, outperforming the baseline by more than 10% in absolute
values.
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Table 3: Realtime factor of SAD on an [Intel®Xeon®CPU E3-
1240 v6 @ 3.70GHz, 8GB RAM].

System Stat. SAD CNN + HMM Seg. RNN

Realtime factor 0.004 72 0.0119 0.0445
Tool chain C++/Matlab Pytorch [26] Pytorch [26]
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