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Abstract
This paper is a submission to the Alzheimer’s Dementia

Recognition through Spontaneous Speech (ADReSS) chal-
lenge, which aims to develop methods that can assist in the
automated prediction of severity of Alzheimer’s Disease from
speech data. We focus on acoustic and natural language
features for cognitive impairment detection in spontaneous
speech in the context of Alzheimer’s Disease Diagnosis and
the mini-mental state examination (MMSE) score prediction.
We proposed a model that obtains unimodal decisions from
different LSTMs, one for each modality of text and audio,
and then combines them using a gating mechanism for the
final prediction. We focused on sequential modelling of text
and audio and investigated whether the disfluencies present
in individuals’ speech relate to the extent of their cognitive
impairment. Our results show that the proposed classification
and regression schemes obtain very promising results on both
development and test sets. This suggests Alzheimer’s Disease
can be detected successfully with sequence modeling of the
speech data of medical sessions.

Index Terms: Cognitive Decline Detection, Affective Comput-
ing, Computational Paralinguistics

1. Introduction
Alzheimer’s Disease (AD) is a chronic neurodegenerative con-
dition and the most common form of dementia. AD gradually
affects the memory, language and cognitive skills and ultimately
the ability to perform basic tasks in the everyday lives of pa-
tients. Early diagnosis of AD has become essential in disease
management as it has not been possible to reverse the degener-
ative process, even with significant efforts focused on therapies
[1].

Discrepancies in speech comprehension, speech production
and memory functions are closely tied in with AD as suggested
by a decrease in global vocabulary and a loss in evocative mem-
ory [2]. Patients with AD have difficulty performing tasks that
leverage semantic information; they exhibit problems with ver-
bal fluency and identification of objects [3]. The semantics and
pragmatics of their language appear affected throughout the en-
tire span of the disease more than syntax [4]. AD Patients talk
more gradually with longer pauses and invest extra time seeking
the right word, which contributes to disfluency of speech [3].

AD diagnosis demands the existence of cognitive dysfunc-
tion to be validated by neuropsychological assessments like the
mini mental state examination (MMSE) performed in medical
clinics [5]. Diagnosis is typically based on the clinical analysis

of patients’ history and the presence of typical neurological and
neuropsychological features. It is costly and not accessible to
all patients who have concerns about their memory functions.

Recent experimental research has looked at AD’s auto-
mated analysis from multimodal data as alternative, less inva-
sive tools for diagnostics. Studying behaviours of individuals
could also help detect AD earlier. There has been research on
building systems which use a broad range of multimodal fea-
tures to identify AD severity. A meaningful association between
MMSE scores and language measures such as articulation and
disfluency has been found [6].

Much of the work to date has looked separately at the prop-
erties of the language of an individual: acoustic and lexical
characteristics of speech, or syntax, fluency, and content of in-
formation. Usually these are studied within language tasks in
specific domains or in conversational dialogue [7]. Several stud-
ies have suggested various forms of speech analysis to identify
AD. Researchers found that the number of pauses, pause pro-
portion, phonation time, phonation–to-time ratio, speach rate,
articulation rate, and noise-to-harmonic ratio correlate with the
severity of AD [8]. Weiner et al. [9] developed a Linear Dis-
criminant Analysis (LDA) classifier with a set of acoustic fea-
tures such as the mean of silent segments, speech and silence
durations and silence to speech ratio to distinguish subjects with
AD from the control group and achieved a classification accu-
racy of 85.7 percent. Ambrosini et al. [10] showed an accuracy
of 73 percent when using selected acoustic features (pitch, voice
breaks, shimmer, speech rate, syllable duration) to detect mild
cognitive impairment from a spontaneous speech task.

In terms of the features which aid AD detection, lexical
features from spontaneous speech are shown to be informative.
Jarrold et al. [11] extracted the frequency occurrence of 14 dif-
ferent part of speech features and combined them with acoustic
features. Abel et al. [12] modeled patient speech errors (naming
and repetition disorders) to the problem of AD diagnosis.

There has also been work on modelling multimodal input
for AD detection. Gosztolya et al. [13] examined the fusion
of two SVM models with separate feature sets. The first model
used a set of acoustic features, and the second model was de-
veloped using linguistic features extracted from manually an-
notated transcripts. Their work showed the complementary in-
formation that audio and lexical features may contain about a
subject with AD.

Among other similar tasks, using multimodal fusion to pre-
dict a cognitive state, research has been done on integrating tem-
poral information from two or more modalities in a recurrent
approaches to classify emotions or detecting different mental
states, such as depression [14]. One key challenge these mod-
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els have is addressing the various predictive capacity of each
modality and their different levels of noise. The application of a
gating mechanism in various multimodal tasks has been shown
to be successful in controlling the level of contribution of each
modality to the eventual prediction.

This paper addresses AD classification and MMSE score
regression tasks, which are part of the Alzheimer’s Dementia
Recognition through Spontaneous Speech (ADReSS) challenge
[15]. In ADReSS, participants are required to assess the AD
severity of different subjects, where the target severity is based
on their MMSE scores.

We performed a binary classification of samples of speech
into AD and non-AD classes and create regression models to
predict MMSE scores. Using the ADReSS Challenge data
which consists of speech recordings and transcripts of spoken
picture descriptions, we explored various features as diagnos-
tically relevant tools. We focused in particular on sequential
modelling of sessions and whether the disfluencies and self-
repairs present in individuals’ speech can help predict the level
of cognitive impairment.

Our approach is motivated by [14] that developed the ability
to learn difficult decision boundaries which other models with
different methods of fusion have trouble managing, and max-
imise the use and combination of each modality. We employed
data of individuals under controlled conditions, and modeled
the sessions with audio and text features in a Long-Short Term
Memory (LSTM) neural network to detect AD. Our findings in-
dicate that AD can be detected with minimal information avail-
able on the structure of the description tasks by pure sequential
modelling of a session. We also found that disfluency markers
have predictive power for AD recognition.

2. Proposed Approach
Our approach is to model the speech of individuals giving pic-
ture descriptions as a sequence to predict whether they have AD
or not, and if so, to what degree. To predict AD, we performed
three sets of experiments using features from the audio and text
data:

1 LSTM models utilising unimodal audio and text features.

2 LSTM model with gating to test the effect of using mul-
timodality.

3 A multimodal LSTM model using acoustic and lexical
information, including disfluency tagging.

The details of the three experiments are outlined below in
the following sub-sections. In line with the standard assumption
in deep learning, we take the approach that for a model to be
genuinely data-driven, minimal feature engineering is required.
The model’s power is in its capacity to represent information
through non-linear transforms, at varying spatial and temporal
units, and from different modalities. Since we were interested
in modelling temporal session changes, we used a bi-directional
Long Short-Term Memory (LSTM) neural network as it has the
added benefit of sequential data modelling. For each of the au-
dio and text modalities we trained an LSTM model separately,
using the audio and text features.

2.1. Multimodal Features

Lexical Features from Text A pre-trained GloVe model [16]
was used to extract the lexical feature representations from
the picture description transcript and convert the utterance se-
quences into word vectors. We selected the hyperparameter val-

ues, which optimised the output of the model on the training set.
The optimal dimension of the embedding was found to be 100.

Audio Features A set of 79 audio features were extracted
using the COVAREP acoustic analysis framework software, a
package used for automatic extraction of features from speech
[17]. We sampled the audio features at 100Hz and used the
higher-order statistics (mean, maximum, minimum, median,
standard deviation, skew, and kurtosis) of COVAREP features.
The features include prosodic features (fundamental frequency
and voicing), voice quality features (normalized amplitude quo-
tient, quasi open quotient, the difference in amplitude of the
first two harmonics of the differentiated glottal source spec-
trum, maxima dispersion quotient, parabolic spectral parame-
ter, spectral tilt/slope of wavelet responses, and shape parame-
ter of the Liljencrants-Fant model of the glottal pulse dynamics)
and spectral features (Mel cepstral coefficients 0-24, Harmonic
Model and Phase Distortion mean 0-24 and deviations 0-12).
Segments without audio data were set to zero. A standard zero-
mean and variance normalization was applied to features. We
omitted all features with no statistically significant univariate
correlation with the results of training set.

2.2. Sequence Modeling

The potential of neural networks lies in the power to derive
representations of features by non-linear input data transforma-
tions, providing greater power than traditional models. As we
were interested in modelling temporal nature of speech record-
ings and transcripts, we used a bi-directional LSTM. For each
of the audio and text modalities we trained a separate unimodal
LSTM model, using different sets of features. For the input
data we explored different timesteps and strides. After explor-
ing different hyper-parameters, the model using audio data has
a timestep of 20 and stride of 1 with 4 bi-directional LSTM lay-
ers with 256 hidden nodes. The model using text input has an
input with a timestep of 10 and stride of 2 and has 2 LSTM lay-
ers with 16 hidden nodes. The code used in the experiments are
publicly available in an online repository.1

2.3. Multimodal Fusion with Gating

Audio and text features can include not only discriminative and
temporarily changing information about the current state of a
subject, but supporting information as well.

The model consists of two branches of the LSTM, one for
each of the modalities, with their outputs combined into fi-
nal feed-forward highway layers. The branches are made up
of different hyperparameters and configured with respect to
each modality’s properties. Their outputs are concatenated and
passed through N highway layers (where the best value N was
determined from optimizing on heldout data). We pad the size
of the training examples in the text set (which was the smaller
set) to meet the audio set by mapping together instances that oc-
curred in the same session, as the audio and text inputs for each
branch of the LSTM had different timesteps and strides.

Gating Mechanism Data from two modalities affect the fi-
nal output differently, and it is important to consider the amount
of noise when aggregating them into a single representation.
Since learned representation for the text can be undermined by
corresponding audio representation, during multimodal fusion
we need to minimise the effects of noise and overlaps. We use
feed-forward highway layers [18], with gating units that learn
by weighing text and audio inputs at each time step to regulate

1https://github.com/mortezaro/ad-recognition-from-speech
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Figure 1: Multimodal fusion with gating.

information flow through network work.
Each highway layer consists of two non-linear transforma-

tions: a Carry (Cr) and a Transform (Tr) gate which determine
the degree to which the output is generated by transforming and
carrying the input. Each layer uses the gates and feed-forward
layerH to regulate its input vector at timestep t,Dt, to generate
output y:

y = Tr ·H + Cr ·Dt (1)

where Cr is simply defined as 1− Tr, giving:

y = Tr ·H + (1− Tr) ·Dt (2)

The transform gate Tr is defined as σ(WTrDt + bTr),
where WTr is the weight matrix and bTr the bias vector for the
gates. Based on the transform gates outputs, highway layers ad-
justs their performance from multiple-unit layers to layers that
only pass through their inputs. As inspired by [18] and to help
resolve long-term learning dependencies faster we initialise bTr

with a negative value (biased towards the Carry gate). We use a
block of 3 stacked highway layers. The overall architecture of
the LSTM with Gating model is shown in Figure 1.

2.4. Multi-modal Model with Disfluency Markers

Disfluencies like self-repairs, pauses and fillers are widespread
in everyday speech [19]. Disfluencies are usually seen as in-
dicative of communication problems, caused by production or
self-monitoring issues [20]. Individuals with AD are likely to
deal with troubles in language and cognitive skills. Patients with
AD speak more slowly and with longer breaks, and invest ex-
tra time seeking the right word, which in effect contributes to
disfluency [3]. The present research explores the disfluencies
present in the speech of AD patients as they contribute to sever-
ity of symptoms.

Self-repair disfluencies are typically assumed to have a
reparandum-interregnum-repair structure, in their fullest form
as speech repairs [21]. A reparandum is a speech error subse-
quently fixed by the speaker; the corrected expression is a re-

pair. An interregnum word is a filler or a reference expression
between the words of repair and reparandum, often a halting
step as the speaker produces the repair, giving the structure as
in (3)

John [ likes︸ ︷︷ ︸
reparandum

+ { uh }︸ ︷︷ ︸
interregnum

loves ]︸ ︷︷ ︸
repair

Mary (3)

In the absence of reparandum and repair, the disfluency re-
duces to an isolated edit term. A marked, lexicalized edit term
such as a filled pause (“uh” or “um”) or more phrasal terms
like “I mean” and “you know” can occur. Recognizing these
elements and their structure is then the task of disfluency detec-
tion.

We automatically annotated self-repairs using a deep-
learning-driven model of incremental detection of disfluency
developed by Hough and Schlangen [22, 23]. It consists of deep
learning sequence models that use word embeddings of incom-
ing words, part-of-speech annotations, and other features in a
left-to-right, word-by-word manner to predict disfluency tags.
Here each word is either tagged as a repair onset tag (marking
first word of the repair phase) edit term, or fluent word by the
disfluency detector- we concatenate the disfluency tags with the
word vectors to create the input for text-based LSTM.

3. Experiments
3.1. Data

The ADReSS challenge’s data consists of speech recordings
and transcripts of spoken picture descriptions gathered from
participants via the Boston Diagnostic Aphasia Exam’s Cookie
Theft picture [15]. The training set includes 108 subjects, and
the state of the subjects is assessed on the basis of the MMSE
score. MMSE is a commonly used cognitive function test for
older people. It involves orientation, memory, language, and
visual-spatial skills tests. Scores of 25-30 out of 30 are consid-
ered as normal, 21-24 as mild, 10-20 as moderate and <10 as
severe impairment.

The total number of speech segments each participant had
generated was 24.86 on average. The annotations for the test set
were not included in the public release of the ADReSS Chal-
lenge, so all models were tested on both the development and
test set. The data is pre-processed acoustically and is balanced
in terms of age and gender.

3.2. Implementation and Metrics

We set up our model to learn the most useful information from
modalities for predicting AD. All experiments are carried out
without being conditioned on the identity of the speaker. The
sizes of layers and the learning rates are calculated by grid
search on validation test. The LSTM models were trained using
ADAM [24] with a learning rate of 0.0001. For the loss function
we used Binary Cross-Entropy to model binary outcomes, and
Mean Square Error (MSE) to model regression outcomes. For
binary classification of AD and non-AD, we report accuracy,
precision, recall, and F1 scores and for the MMSE prediction
task we report the Root Mean Square Error (RMSE).

3.3. Baseline Models

We compare the performance of our models to the ADReSS
Challenge baseline [15] with an ensemble of audio features
which was provided with the dataset. The baseline classifica-
tion experiments were different methods of linear discriminant
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analysis (LDA), decision trees (DT), and support vector ma-
chines (SVM). The baseline regression experiments were dif-
ferent methods of DT, gaussian process regression (GPR), and
SVM.

Table 1: Result of the AD classification and regression experi-
ments with our models in cross validation

Models Features Accuracy RMSE
LSTM Acoustic 0.64 6.01
LSTM Lexical 0.69 5.42
LSTM Lexical+ Dis 0.73 5.08
LSTM with Gating Acoustic + Lexical 0.76 5.01
LSTM with Gating Acoustic + Lexical + Dis 0.77 4.98

Table 2: Result of the AD classification and regression experi-
ments with our models against baseline models on test set

Models Features Accuracy RMSE
Baseline ([15])
LDA Acoustic 0.625 -
DT Acoustic 0.625 6.14
SVM Acoustic 0.563 6.12
GPR Acoustic - 6.33
Our Models
LSTM Acoustic 0.666 5.93
LSTM Lexical 0.708 5.45
LSTM Lexical + Dis 0.729 4.88
LSTM with Gating Acoustic + Lexical 0.771 4.57
LSTM with Gating Acoustic + Lexical + Dis 0.792 4.54

4. Results
In Table 1, we present our proposed model’s performance in a
cross-validation setting and in Table 2 against that of baselines
models on AD detection on the provided test set. For AD de-
tection, our proposed LSTM model with gating and disfluency
features achieves an accuracy of 0.792 and RMSE of 4.54, out-
performing all the baselines. The overall findings confirm our
assumption that a model with a gating structure can more effi-
ciently minimise the errors and noise of the individual modali-
ties.

Effect of disfluency features We found that disfluency tags
help as features in AD detection. Adding disfluency features
to the lexical features lead to improvement in both unimodal
(ACC 0.70 vs. 0.72; RMSE 5.45 vs. 4.88) and multimodal mod-
els (ACC 0.77 vs. 0.79; RMSE 4.57 vs. 4.54).

Effect of multimodality The multimodal LSTM with gat-
ing model outperforms the single modality AD detection mod-
els in both the classification and regression tasks. A perfor-
mance increase is obtained by combining textual and audio
modalities with gating over single modality models (ACC 0.72
vs. 0.79; RMSE 4.88 vs. 4.54). Adding audio features improves
performance despite having different steps and timesteps inputs
for each LSTM branch. In terms of our competitor baselines
(without the information from the manual transcripts), multi-
modal classifiers performed better than all the baseline models,
indicating the potential benefits of multimodal fusion in AD de-
tection. We found that while the baseline audio-based mod-
els have some discriminative capacity, sequence modelling is
more accurate (ACC scores 0.67 vs. 0.63) and has lower (bet-
ter) RMSE (5.93 vs. 6.12) for predicting AD.

For AD classification, the text features alone are more in-
formative than the audio features, as using only the text modal-
ity gives a better AD prediction than utilizing unimodal audio

modality sequentially (Acc scores 0.73 vs. 0.67; RMSE 4.88 vs.
5.93).

We can see that all models provide more accurate results on
the test set than in cross validation. LSTM with gating mod-
els accuracy improved more than other models on the test set
(RMSE 4.54 and 4.57 vs. 4.98 and 5.01).

Error analysis The results in Table 3 show that the LSTM
model with gating and disfluency features obtains the highest
precision and recall for both AD and non-AD classes. The
model achieves F1 scores of 0.7826 for AD and 0.8000 for non-
AD. The addition of gating particularly improves the recall of
AD class: the LSTM model with lexical and disfluency features
without gating has a recall 0.6667 for the AD class compared to
the 0.7500 achieved with gating, while its 0.7910 recall for the
non-AD class is not as far beneath the 0.8333 achieved by the
full gating model. Depending on the application the model is
used for, false negatives or false positives for AD detection will
be more or less desirable, but as it stands our full gating model
considerably reduces the false negatives of diagnosis whilst still
marginally reducing the false positives.

Table 3: Results of AD classification task on test set

Models Class Precision Recall F1 Score Accuracy
LSTM
(Lexical+ Dis)

AD 0.7619 0.6667 0.7111 0.7292non-AD 0.7037 0.7910 0.7451
LSTM with Gating
(Acoustic + Lexical)

AD 0.7826 0.7500 0.7660 0.7708non-AD 0.7600 0.7917 0.7755
LSTM with Gating
(Acoustic + Lexical+ Dis)

AD 0.8182 0.7500 0.7826 0.7917non-AD 0.7692 0.8333 0.8000

5. Conclusions
We have presented a deep multi-modal fusion model that learns
the AD indicators from audio and text modalities as well as dis-
fluency features. We trained and tested the model on audio and
transcript data from individuals doing a description task under
controlled conditions, and modeled the sessions with an LSTM
and feed-forward highway layers as gating mechanism for AD
detection. Our findings indicate that AD can be identified by
pure sequential modelling of a session, with limited informa-
tion available on the structure of the description tasks. We also
found that markers of disfluency hold predictive power for iden-
tification of AD.

In future work we intend to study a series of language mark-
ers associated with AD severity, as well as interactions between
them. In particular, we want to undertake a more principled
approach to lexical markers, disfluency markers in terms of a
study of self-repair and structural markers with a look at gram-
matical fluency. Furthermore, we want to find acoustic features
that contribute more to the prediction of AD and have higher
correlation with linguistic information.
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[3] K. López-de Ipiña, J.-B. Alonso, C. M. Travieso, J. Solé-Casals,
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