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Abstract
In the light of the current COVID-19 pandemic, the need for
remote digital health assessment tools is greater than ever. This
statement is especially pertinent for elderly and vulnerable pop-
ulations. In this regard, the INTERSPEECH 2020 Alzheimer’s
Dementia Recognition through Spontaneous Speech (ADReSS)
Challenge offers competitors the opportunity to develop speech
and language-based systems for the task of Alzheimer’s Demen-
tia (AD) recognition. The challenge data consists of speech
recordings and their transcripts, the work presented herein is
an assessment of different contemporary approaches on these
modalities. Specifically, we compared a hierarchical neural
network with an attention mechanism trained on linguistic fea-
tures with three acoustic-based systems: (i) Bag-of-Audio-Words
(BoAW) quantising different low-level descriptors, (ii) a Siamese
Network trained on log-Mel spectrograms, and (iii) a Convo-
lutional Neural Network (CNN) end-to-end system trained on
raw waveforms. Key results indicate the strength of the linguis-
tic approach over the acoustics systems. Our strongest test-set
result was achieved using a late fusion combination of BoAW,
End-to-End CNN, and hierarchical-attention networks, which
outperformed the challenge baseline in both the classification
and regression tasks.
Index Terms: Alzheimer’s Disease, Bag-of-Audio-Words, Con-
volutional Neural Network, Siamese Network, Hierarchical Neu-
ral Network, Attention Mechanisms

1. Introduction
According to the World Health Organisation (WHO), dementia
is a major cause of disability in the elderly population world-
wide, with at least 10 million new cases reported every year [1].
Alzheimer’s Disease (AD) is the most common cause of demen-
tia [1, 2] and is a major public health concern, with considerable
associated socio-economic costs [2]. Therefore, there is an ur-
gent need for early diagnosis systems in order to promote timely
and optimal management. The current coronavirus disease 2019
(COVID-19) pandemic accelerates this need; people living with
dementia are at an increased risk of infection due to an inability
to comprehend, recall and follow hygiene and procedures [3].

Declines in speech and language are regarded as key early
markers of AD [4]. However, sparse and heterogeneous data sets
are limiting the impact of research in this area. The Alzheimer’s
Dementia Recognition through Spontaneous Speech (ADReSS)
challenge aims to address this issue by supplying a new AD
speech corpus on which competitors perform two different recog-
nition tasks [5]. The database consists of 54 participants with
AD and 54 matched controls. The first task is the 2-class classifi-
cation between the AD and non-AD samples. The second task is
a regression task predicting the score of the Mini-Mental State
Examination (MMSE) [6] of a speaker.

Herein, we present the Training Network on Automatic
Processing of PAthological Speech (TAPAS) – a Horizon 2020
Marie Skłodowska-Curie Actions Innovative Training Network
European Training Network – approach to these two tasks. As
both acoustic- and linguistics-based systems have shown promise
in the identification of AD, the latter particularly so, we explore
the efficacy of combining information gained from these differ-
ent combinations of state-of-the-art approaches.

Based on previous works that demonstrated their suitability
in related tasks, we utilise three different acoustic-based systems.
The first, a Bag-of-Audio Words (BoAW) system [7] has been
successfully applied for other speech-health recognition tasks,
e. g., [8, 9]. Based on results achieved in [10], we also test a
Siamese network [11]. Finally, building on [12], we include
an End-to-End, raw waveform, Convolutional Neural Network
(CNN). To the best of the authors’ knowledge, this is the first
time these three systems have been used in AD recognition.

We compare and combine these acoustic systems, with a
linguistic system that utilises Global Vectors (GLoVe) word
embeddings [13] and a hierarchical attention neural network [14].
The strength ofthis approach has been demonstrated across a
range of natural language processing (NLP) tasks [15], including
AD detection [16, 17]. Given that linguistic features have, in
general, shown stronger performances in AD detection tasks [4,
18], we regard this system as our gold standard, and investigate if,
(i) a combination of our acoustic systems can match performance
with the linguistic systems and, (ii), if the acoustic systems
provide complementary information to the linguistic system.
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2. Methodology
This section introduces the acoustic and linguistic systems con-
sidered in our contribution to the ADReSS challenge.

2.1. Bag-of-Audio-Words

Bag-of-Audio-Words (BoAW) [7] features have been applied for
a range of speech-based recognition tasks, including cold and flu
detection [8] and level of pain evaluation [9]. BoAW involves
the quantisation of acoustic low-level descriptors (LLDs), where
each frame-level LLD vector is assigned to an audio word from
a previously learnt codebook. Typically, the codebook is formed
form LLDs extracted from the training partition of a dataset. The
subsequent quantisation, undertaken by counting the number of
assignments for each audio word, generates a sparse histogram
representation of a given speech file. The openXBOW [7] is an
open-sourced toolbox for the formation of BoAW features, it has
been widely utilised such as in INTERSPEECH Computational
Paralinguistics Challenges (COMPARE) [19].

In the formation of BoAW features, LLD vectors are first
extracted from the speech files. In this work, three LLDs fea-
ture representations are generated using openSMILE [20]: Mel-
Frequency Cepstral Coefficient (MFCC), log-Mel, and the COM-
PARE acoustic feature set [21]. These three feature representa-
tions have previously been shown to be suitable for AD recogni-
ton [4, 5, 22] and their bagged representations have performed
well in previous studies, especially in health-based tasks [23].
Therefore, the three BoAW representations have promise as ef-
fective representations of AD recognition.

2.2. Siamese Network

Inspired by the success of Siamese networks in related tasks [10,
24–26], we investigate this paradigm for the task of AD recog-
nition. A core advantage of Siamese networks is the associated
contrastive loss function that encourages intra-class compactness
and inter-class separability [27]. During training, information
from segments of recordings belonging to the same condition
(AD speech or healthy speech) is pulled together using con-
trastive loss, while information relating to segments of record-
ings from different conditions are pushed away from each other.

Formally we define the contrastive loss Lc as:

Lc(x1,x2, y) = (1− y) ·D(x1,x2)
2

+ y ·max(0, αc −D(x1,x2))
2,

(1)

where y = 1 if the embeddings x1, and x2 are from different
conditions and should thus be distant, and y = 0 when x1 and
x2 are from the same condition and thus should be close. Addi-
tionally, D denotes the Euclidean distance and αc is the margin
which we want to obtain between the two different conditions.

2.3. End-to-End Convolutional Neural Network

We also propose modelling AD’s speech in an end-to-end manner,
utilising raw waveform based CNNs. This framework was been
successfully applied to tasks such as emotion recognition [28],
speaker verification [29], gender identification [30], or depres-
sion detection [12]. Exploiting this paradigm, we can capture in-
formation related to different speech production mechanisms by
modifying the initial kernel width (kW ) parameter [29, 31]. Set-
ting kW = 300 covers a signal length of approximately 20 ms
(segmental) allows the first convolution layer to model voice-
source-related information. Alternatively, by setting kW = 30
covers a signal of approximately 2 ms of length (sub-segmental),

encouraging the first convolution layer into tending to capture
vocal tract information, such as formants.

In order to verify the importance of changes in fundamental
frequency, we also investigated using zero-frequency filtered
(ZFF) signals [32]. Taking inspiration from a recent paper show-
ing that voice source related information related to depression
can be modelled with CNNs [12], the filtered signals are fed to
the same network applied to classification and regression tasks.

2.4. Hierarchical Attention Network

We implement a bi-directional Hierarchical Attention Network
(bi-HANN) as our linguistic system. This choice was motivated
by the success of bi-HANNs in other AD recognition tasks [16,
17]. This approach is a two-stage system which operates at the
word- and sentence-level [14]. In our model, wit with t ∈ [1, T ]
and i ∈ [1, L] is used to represent the tth word in ith sentence.
Each word wij is encoded into a fixed dimensional vector xij
by a pre-trained embedding matrix We. The choice of word
embedding matrix is a trainable parameter in the model.

To extract word-level characteristic patterns from the
variable-length sequence, a bidirectional long short-term mem-
ory (bi-LSTM) is applied on the word vectors, followed by an
attention mechanism. After obtaining the sentence representation
si, a further bi-LSTM layer extracts sentence-level information
extraction. Given a sentence vector si, this action generates a
transcript representation v with a similar structure as for the
word level model. Finally, a dense layer with a sigmoid function
is applied for classification on the transcript representation. See
[17] for further information on this paradigm.

3. Experimental Setup
This section introduces the ADReSS AD dataset, as well as the
key outlines the key experimental settings associated with our
four AD recognition systems.

3.1. Database

The speech data and transcripts used in this work were provided
by the ADReSS challenge organisers [5]. The speech data con-
tains both full speech files and segmented speech chunks. The
segmented chunks, used to set the challenge baseline [5] were
generated by the organisers applying a log-energy threshold-
based voice activity detector. The BoAW and End-to-End sys-
tems utilised these chunks, while the Siamese network exploits
the full recordings. The transcripts contain the linguistic content
of an interviewer and a participant, as well as other related an-
notations. We, therefore, pre-processed all the raw transcripts
to remove all content unrelated to the spoken content of the
participant and used the remaining information as input to the
bi-HANN. For the sake of brevity, the demographics and charac-
teristics of the data set are not given here. The interested reader
is referred to [5] for these details.

3.2. Bag-of-Audio-Words

The extraction of the three LLDs representations mentioned
in 2.1 is described below. Both MFCC and log-Mel LLDs are
extracted with a frame size of 0.025 s and a step size of 0.01 s.
The MFCC LLDs consist of MFCC 1-14 and the corresponding
delta regression coefficients, leading to 28-dimensional MFCC
LLDs. The log-Mel LLD feature set contains 64-band log-Mel
frequencies and corresponding 64 delta regression coefficients.
The 130 dimensional COMPARE LLDs [21] were obtained by
the OPENSMILE configure file ComParE 2016.conf.
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Next the LLD’s were quantised to form the BoAW repre-
sentations. The input LLDs are split into two subsets, in order
to train a separate codebook in each subset. We then quantise
14 LLDs for MFCC, 64 for log-Mel, and 65 for ComParE fea-
tures for both subsets. The number of word-assignments was
set as 10 for all three feature sets. Then, the optimal codebook
size was searched in {65, 125, 250, 500}. Finally, the extracted
BoAW features were then fed into a linear Support Vector Ma-
chine (SVM) for classification or regression. The combination
of BoAW and SVM has worked well in similar tasks [8, 9]. The
complexity hyperparameter in the SVM is optimised from the
setting of {1e−6, 1e−5, 1e−4, 1e−3, 1e−2, 1e−1, 1}.

3.3. Siamese Networks
This model generates embeddings using a deep Siamese neu-
ral network consisting of convolutional layers. The network
was trained using a contrastive loss between the two different
conditions (Section 2.2). Note, as the Siamese network and con-
trastive loss function are not suited to regression analysis, we
only present use of this system in the classification task. As an
input, the model used either 8-second or 16-second segments,
with a 2 second stride size, extracted from the full, rather than the
chunked audio recordings (Section 3.1). Log-Mel spectrograms
were then extracted from these segments using a frame size of
25 ms and stride of 10 ms. Our deep Siamese network consists
of two CNNs to extract embeddings, one for each class. The
encoded embeddings are then concatenated and fed into a fully
connected network to estimate their similarity. Specifically, each
CNN has 4 convolutional layers, each of which is followed by
rectified linear unit (ReLU) activations, and batch normalisation.
After the embeddings from the two CNNs are extracted, they are
concatenated and fed into a 2-layer Fully Connected Network
with each layer followed by ReLU activation. The final layer
uses a sigmoid activation function to squash the output value
between 0 and 1, which is regarded as the similarity value.

3.4. End-to-End Convolutional Neural Network

Raw waveform CNN networks typically consist of an initial
filter stage followed by a classification stage. Our proposed
network has four convolution layers, kernel widths 30-10-4-3 for
subsegmental modelling, and 300-5-4-3 for segmental modelling
(Section 2.3). Convolution layers are followed by maximum
pooling and ReLU activations. The final stage of the network is
a multilayer perceptron. At the output, the classification network
predicts a probability for AD using a sigmoid function, while
the output is a linear value for the regression model. In both
cases, this is a per frame action. These frame-level values are
then averaged to get per-utterance posterior probabilities.

The input to the CNNs, wseq , is a 250 ms length speech
segment, shifted by 10 ms. We randomly-initialised CNNs with
a batch-size of 256 and employ a cross-entropy cost function
or mean squared error for the two tasks, respectively. We opted
for a decaying learning schedule which halves the learning rate
between 10−3 and 10−7 whenever the validation loss stops re-
ducing. In initial testing, we observed that a combination of ZFF
with subsegmental modelling was better suited to the classifica-
tion task. In contrast, the combination of ZFF with segmental
modelling was better suited to the regression task. Herein, ZFF
denotes this combination.

3.5. Hierarchical Attention Network

Only the transcripts that corresponded to participants are used for
the bi-HANN model (Section 3.1). GloVe 100-dimensional word

Table 1: A comparison of the proposed approaches on the
ADReSS Challenge training set. Results are the average perfor-
mance across a nine-fold cross-validation step up.

Approach Acc. F1 RMSE

BoAW MFCC 65 .611 .604 7.03
125 .630 .623 7.05
250 .602 .593 7.00
500 .620 .610 7.17

LogMel 65 .565 .540 7.18
125 .556 .526 6.97
250 .537 .522 7.15
500 .556 .544 7.03

COMPARE 65 .620 .601 7.04
125 .593 .582 7.04
250 .574 .556 7.17
500 .574 .567 7.13

Fusion – .639 .639 6.99

SiameseNet LogMel 8 s .586 .693 –
16 s .628 .731 –

End-to-End Raw seg .713 .762 8.89
ZFF .741 .780 7.58

Linguistic bi-LSTM .694 .736 5.99
bi-LSTM-Att .842 .842 5.49
bi-HANN .827 .826 4.86

Fusion Maj. / Wt. .850 .855 4.91
Fusion bi-LSTM-Att .887 .887 7.73
Fusion bi-HANN .831 .829 7.64

vectors trained on Wikipedia 2014 and Gigaword-5 data were
taken as our pre-trained embedding matrix [13]. The bi-HANN
was trained on a fixed number of epochs (20) and evaluated on
the development set at each epoch. Batch size was set to 20
and the best model selected via the F1-score on the training set.
The number of LSTM units was set to 100, and the dense layer
dimension in word-level was set as 50. For the attention layer’s
dimension, both the sentence and word level is set to 30. The
sentence length was set to 30, and we zero-padded the shorter
sentences. The sentence numbers in a transcript were set to 30,
with zero-padding used on the shorter transcript. We opted for
Adam optimisation with a learning rate of 1e−5. Dropout was
applied after all the functional layers with 0.3 dropout rate.

We compare the bi-HANN with two simplified linguistics
systems, a bi-LSTM and bi-LSTM with attention (bi-LSTM-
Att). These models follow the same parameters setting as in the
biHANN. The maximum word number for each transcript is 200,
with zero-padding being applied if the word number is less than
this amount. Dropout layers are adopted after the LSTM layer
and attention, and dense layers.

3.6. Evaluation Metrics
As per the challenge organisers [5], we report our results in terms
of accuracy and F1-score for the classification score, and root
mean squared error (RMSE) for the MMSE prediction task. We
divided the 108 speaekers in the training set into 9 folds of 12
speakers1 and report the average of each score across each fold
in the results section.

1Partitioning of folds available on request
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Figure 1: Accuracy per MMSE score of our for best systems on
the development set, together with a histogram of MMSE scores.
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Figure 2: RMSE per MMSE score of our for best systems on the
development set, together with a histogram of MMSE scores.

4. Results and Discussion
4.1. Training Set Results
As expected, the linguistic systems outperforms the acoustic
systems (Table 1). The bi-HANN system achieves the strongest
result on the regression task; however, the simpler bi-LSTM-Att
system achieves the strongest performances on the classification
task. This result does not match with similar systems in the liter-
ature [17]. We speculate the more even performances between
the bi-HANN and bi-LSTM-Att systems are due to the smaller
size of the ADReSS database. The end-to-end CNNs produce
the strongest performance of the acoustic systems on the classi-
fication task, highlighting the benefits of self-learning features.
The inclusion of the ZFF signals improves the performance of
this set-up, indicating the importance of fundamental frequency
in AD recognition tasks. Finally, the BoAW-logMel-C125 gains
the lowest RMSE of our acoustic systems; verifying the strength
of this feature representation in paralinguistic tasks [23].

Figure 1 and Figure 2 show accuracy and RMSE per MMSE,
respectively, for the best performing systems from each group
on the training set. In terms of accuracy, none of the systems
in Figure 1 show any consistency. Whereas, in terms of RMSE,
we observe high errors at low MMSE values and another peak
around 26, where control and AD histograms start overlapping.

The late fusion between the best-performing systems from
each grouping did not improve system performance beyond the
linguistic only approaches (Table 1). This approach adopted a
majority voting for the classification task or a weighted aver-

Table 2: A comparison of the best performing approaches from
Table 1 on the ADReSS Challenge test set

Approach Acc. F1 RMSE

Baseline [5] .625 .620 6.14

BoAW .563 .561 6.88
BoAW fusion (3-best) .625 .625 6.45
SiameseNet .708 .708 –
End-to-End .667 .664 6.75

bi-LSTM-Att .813 .812 4.66
bi-HANN .729 .726 4.74

Fusion Feat. (bi-LSTM-Att) .771 .766 5.62
Fusion Feat. (bi-HANN) .813 .810 6.65
Fusion Maj./ W-avg (3-best) .852 .854 4.65

age for the regression task. However, in the classification task,
when fusing the bi-LSTM-Att and ZFF systems, we were able to
improve on the performance of the bi-LSTM-Att system. This
approach exploited the learnt representations from the second to
last layer of the ZFF CNN. These features were concatenated
with the attention output of the bi-LSTM attention layer and
the network trained as per (Section 2.4). However, this feature
fusion approach was not as well suited to the regression task.

4.2. Test Set Results
The SiameseNet performs the strongest out of the acoustic sys-
tems in the classification task (Table 2). Interestingly, despite
their stronger performance in the classification task, none of the
acoustic systems trailed on the test set out-performs the regres-
sion baseline. The bi-LSTM-Att system was our strongest stand-
alone system, highlighting the strength of considering linguistics
in AD recognition tasks. The benefits of fusion are more appar-
ent in the test set, with our best result being achieved through a
majority vote (classification) / weighted average (fusion) of the
BoAW-MFCC-C125 (classification) / BoAW-logMel-C125 (re-
gression), ZFF, and bi-LSTM-Att systems. This set-up achieves
an accuracy of .852 and an RMSE of 4.65.

5. Conclusions
This paper described the TAPAS Training Network approach to
the INTERSPEECH 2020 ADReSS challenge. We compared
and combined information from four different speech-based
Alzheimer’s recognition approaches; three acoustic and one lin-
guistic. The linguistic systems outperformed our acoustics ap-
proaches; such a result is unsurprising given a human observer
generated the transcripts. Thus, they contain considerably fewer
sources of noise than the audio recordings. Small gains were
found when fusing acoustics and linguistics approaches. In
future work, we will explore the effect of performing similar
analysis when combining acoustic information with linguistics
systems based on transcripts generated from an automatic speech
recognition system.
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