
Using state of the art speaker recognition and natural language processing
technologies to detect Alzheimer’s disease and assess its severity

Raghavendra Pappagari, Jaejin Cho, Laureano Moro-Velazquez, Najim Dehak

Center for Language Speech Processing, Johns Hopkins University, Baltimore, MD, USA
{rpappag1,jcho52,laureano,ndehak3}@jhu.edu

Abstract
In this study, we analyze the use of state-of-the-art tech-

nologies for speaker recognition and natural language process-
ing to detect Alzheimer’s Disease (AD) and to assess its severity
predicting Mini-mental status evaluation (MMSE) scores. With
these purposes, we study the use of speech signals and transcrip-
tions. Our work focuses on the adaptation of state-of-the-art
models for both modalities individually and together to examine
its complementarity. We used x-vectors to characterize speech
signals and pre-trained BERT models to process human tran-
scriptions with different back-ends in AD diagnosis and assess-
ment. We evaluated features based on silence segments of the
audio files as a complement to x-vectors. We trained and eval-
uated our systems in the Interspeech 2020 ADReSS challenge
dataset, containing 78 AD patients and 78 sex and age-matched
controls. Our results indicate that the fusion of scores obtained
from the acoustic and the transcript-based models provides the
best detection and assessment results, suggesting that individual
models for two modalities contain complementary information.
The addition of the silence-related features improved the fusion
system even further. A separate analysis of the models suggests
that transcript-based models provide better results than acoustic
models in the detection task but similar results in the MMSE
prediction task.

1. Introduction
Alzheimers Disease (AD) is the most common cause of demen-
tia and the most prevalent neurodegenerative condition. Its im-
pact on the multiple aspects of society is rising due to the aging
of the worldwide population [1]. While two of the most typi-
cal signs of AD are memory and cognitive decline, the litera-
ture suggests that language impairment is also a common sign
that can be employed to support diagnosis and assessment of
the severity of the disease, given that speech and language pro-
duction can provide information about the cognitive status of
a person and other aspects related to brain damage. Although
the human evaluation of speech and language can be used to
diagnose and assess patients in the clinical setting, that type of
evaluation does not allow an objective quantitative analysis and
reliable repeatability. To this respect, the use of speech recog-
nition and Natural Language Processing (NLP) techniques can
deliver new precision medicine tools that will provide objective
measures and biomarkers. This will allow faster diagnosis and
assessment in a non-invasive and cost-effective manner.

Although the influence of AD in speech and language is di-
verse and subject-dependent, the literature suggests some com-
mon signs such as progressive, logopenic or anomic aphasia
[2, 3, 4] (communication and word retrieval impairment, phone
substitution) and apraxia of speech [5] (articulatory impair-
ment.) Therefore, several studies indicate that both phonetic-
motor signs (related to apraxia) and phonological-linguistic

manifestations (related to aphasia and anomia) can be found
in cohorts of AD patients [5]. Depending on the patient, the
apraxic or aphasic manifestations can be prevalent, suggest-
ing that both acoustic and linguistic analyses are advisable in
systems employing speech technologies automatically to detect
AD or assess its severity.

In this respect, the combination of acoustic and linguistic
features within machine learning based-approaches to automat-
ically detect AD in recordings obtained from the DementiaBank
corpus has already been analyzed [6], obtaining 81% cross-
validation accuracy. Other studies providing similar results sug-
gest that linguistic features provide higher accuracy than acous-
tic features in detecting AD [7]. However, the combination of
both types of features yields better results than when using these
features separately, suggesting that these features are comple-
mentary [7]. Additionally, accuracies over 80% have been re-
ported when employing word and silence rates obtained with
Voice Activity Detection (VAD) systems and transcripts [8].
Moreover, some linguistic features indicative of lexical diver-
sity such as word frequency, percentage of content words, pro-
noun ratio or type-token ratio among others have shown a high
correlation with Mini-Mental Status Examination (MMSE) in
AD patients [9], suggesting that patient’s morphosyntactic im-
pairments can be automatically analyzed and employed for
severity assessment.

Although the literature includes a fair amount of studies
employing acoustic and linguistic features [6, 7, 8, 9, 10, 11, 12]
for the automatic detection and assessment of AD, to our knowl-
edge no study analyzes the use of speaker recognition and NLP
technologies such as x-vectors [13] and Bidirectional Encoder
Representations from Transformers (BERT) [14]. These tech-
niques have become the state-of-the-art in speech technologies,
and its acoustic and linguistic characterization properties have
been exploited in multiple scenarios such as Parkinson’s Dis-
ease (PD) detection [15], emotion recognition [16], sentiment
analysis [17] or question answering [14], among others.

Consequently, this study aims to analyze the use of these
two Deep Neural Networks (DNN)-based techniques, x-vectors
and BERT, in AD detection and MMSE prediction scenarios.

2. ADReSS Challenge Dataset
The ADReSS Challenge dataset [18] contains two subsets with
speech and transcriptions from speakers with and without AD:
the training and the evaluation subsets. In this study, the train-
ing subset was used to perform cross-validation and to train
models to be evaluated with the evaluation subset.

The training subset includes two groups of speakers: those
diagnosed with AD (AD group) and the age- and sex-matched
control speakers (CC group). Each group is composed of 24
male and 30 female participants. Data in both groups contain
one audio recording per participant, recorded at 44100 Hz and
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with an average length of 72.10 s, demographic information,
full transcript, and MMSE score. In our experiments, we down-
sampled the recordings according to the models we used, as
explained in later sections.

The evaluation subset comprises 11 male and 13 female
participants in each group, while the age distribution is the same
over the two groups. The average session length is 82.51 s.
Challenge participants do not have information about AD diag-
nosis or MMSE assessment for these speakers.

3. Experimental Setup
In this study, we employed two main models to detect AD and
predict MMSE from speech. The first model or acoustic model
is based on the use of acoustic aspects of speech and employs
a speaker characterization technique, i.e., x-vectors and two
different back-ends: Probabilistic Linear Discriminant Analy-
sis (PLDA) for detection and Support Vector Regression (SVR)
for MMSE prediction. The x-vectors were complemented with
heuristic features obtained from the analysis of the silence and
pause segments from the speech signal. The second model or
transcript-based model is a BERT model that utilizes linguis-
tic contents to detect AD subjects and predict MMSE. We hy-
pothesize that the transcript-based model provides complemen-
tary information to the acoustic model. Finally, scores from the
two approaches were fused using a Gradient Boosting Regres-
sor (GBR) or averaging, depending on the task.

Moreover, we differentiate two types of results:

• Cross-validation results: obtained training and testing with
the training subset, using a 10-fold scheme where class and
age distributions were consistent over the folds. The cross-
validation was done speaker-independently since the dataset
has only one session recorded per participant.

• Evaluation results: obtained by testing the models trained
with the training subset on the evaluation subset.

3.1. Acoustic model

3.1.1. x-vectors

To model the speakers’ articulatory, prosodic and phonatory
characteristics included in the dataset, we employ representa-
tion obtained with an x-vector model trained for speaker recog-
nition. An x-vector model is a deep neural network that gen-
erates one single vector or embedding per utterance, charac-
terizing the speaker. Although the technique is considered the
current state-of-the-art for speaker recognition, several studies
suggest that these embeddings also contain information related
to emotion, speaking rate, gender [16, 19] and other articula-
tory, phonatory and prosodic information that can be used to
characterize neurological diseases, as Parkinson’s Disease [15].
In general terms, an x-vector model contains three main parts:
an encoder network to extract frame-level representation from
MFCC, a global temporal pooling layer to produce the embed-
ding (x-vector), and a feed-forward classification network to
produce speaker class posteriors. Once the model training is
done, only the first two parts are used while the last part is dis-
carded. In our case, the three parts consisted of a factorized
time delay network encoder (F-TDNN), mean plus standard de-
viation pooling, and two feed-forward layers, respectively, as
detailed in a previous study [15]. Differentiation process be-
tween AD and CC speakers followed the same setup as the one
explained in the cited study:

Figure 1: Diagram of the acoustic model methodology. In cross-
validation stage, models obtained with the training folds are
used for testing with their respective testing folds. In evaluation
stage, the whole training dataset is employed for training while
the evaluation dataset is used for testing

• First, all speech signals were normalized, low-pass filtered
and re-sampled to 16 kHz.

• Then, we extracted MFCC features (40 coefficients, frame
length of 25 ms with frame shift 10 ms)

• Silence segments were removed employing the standard VAD
from Kaldi [20].

• MFCC features were used to extract one x-vector (dimen-
sion 512) for each speech recording using an x-vector model
trained with VoxCeleb 1 and 2 corpora [21, 22] in Kaldi with
sampling frequency 16 kHz.

• At each cross-validation iteration, all the x-vectors from the
training folds were employed to train a Principal Component
Analysis (PCA) model that was applied to the x-vectors from
the training and testing folds in the cross-validation stage.

• For AD detection, x-vector PCA-transformed coefficients
from the training folds were used to train a PLDA classifier to
differentiate between AD and CC speakers. In the classifier,
a likelihood ratio per speech recording is calculated consid-
ering two classes (AD and CC) which is employed in scor-
ing to take the decision. The scoring threshold is set to the
equal error rate point obtained with the log-likelihoods from
the training folds x-vector-PCA coefficients.

• Similarly, for MMSE prediction, we trained and evaluated a
linear SVR on the x-vector PCA-transformed coefficients.

Fig. 1 includes a diagram of the described process. To get
the best PCA and PLDA models for evaluation on the evalua-
tion subset, the whole ADReSS training subset was used.

3.1.2. Silence features

To complement the x-vectors characterization, which is data-
driven, we also extracted 4-dimensional heuristic features based
on the Kaldi energy-based VAD algorithm. Our goal was to
characterize the presence of silences in the recordings. The four
features are:

• Silence rate (the number of silence regions divided by the
recording length)

• Ratio of silence to speech duration
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• Mean and standard deviation of the duration of silence re-
gions

We only considered silence regions that were longer than 150
ms. Also, we removed the silences at the start and end of the
recordings when these existed. We considered these features
since previous studies suggest that silence-related features can
help to characterize aphasia and apraxia associated with AD [8].
We used these features in two different manners in this study:

• As single features for PLDA and SVR model training to ex-
amine the discrimination capabilities of these features.

• Appended to the x-vector PCA-transformed coefficients,
which we denominate Acoustic model with silence features
scheme. This allows us to observe the complementarity be-
tween x-vectors and silence features.

3.2. Transcript-based model

To model the linguistic-phonological manifestations of AD on
speech, we employed a BERT model [14] on the spoken tran-
scripts, which has shown state-of-the-art performances in sev-
eral NLP applications such as question answering, natural lan-
guage inference, named entity recognition, sentence, and word
prediction, among many others. We chose BERT for two rea-
sons: 1) the embeddings obtained from this model act as gen-
eral text representation and, 2) previous studies reported good
results from fine-tuned BERT models for multiple tasks. Two
examples are depression detection [23] or sentiment analysis
[17].

BERT is a pre-trained language model trained to predict
masked words of a sentence and the next sentence. The BERT
architecture mainly consists of self-attention layers and feed-
forward layers. In general, a pre-trained BERT model is adapted
to a down-stream task by fine-tuning the pre-trained parameters
with the minimal number of newly introduced parameters for
the task [14]. We adapted BERT to our tasks (AD detection and
MMSE prediction) in a similar way:

• We replaced the last layer of the BERT model with a task-
specific layer: a linear layer having two neurons with a soft-
max activation function for AD detection or a linear layer
having 1 neuron with linear activation function for MMSE
prediction.

• We fine-tuned the entire pre-trained model using our data to
minimize cross-entropy loss for AD detection or mean square
error for MMSE prediction.

The inputs of the model were tokens from the transcript that
were tokenized into sub-words using WordPiece tokenizer [24].
These inputs were processed through multiple self-attention and
feed-forward layers to obtain embeddings for each sub-word in
the penultimate layer. Then, the sequence of sub-word embed-
dings was pooled to pass through a linear layer to obtain the
prediction.

For each iteration of the cross-validation experiments, 9
folds from the training subset were employed for BERT fine-
tuning and the remaining fold for testing. We used early stop-
ping criterion to stop training the model and trained for 5
epochs.

3.3. Fusion

In this section, we describe our methodology for fusing acoustic
and transcript model scores. For the AD detection task, we first

Figure 2: Score scatterplot for AD and CC speakers in detection
task considering the transcript-based model scores (that range
between 0 and 1) and the log-likelihood ratio obtained with the
PLDA classifier for the acoustic+silence model. Each dot rep-
resent one subject.

obtained the scores from acoustic and transcript-based mod-
els for all utterances from the testing folds during the cross-
validation stage. Then, we employed these predictions in a
cross-validation scheme to train and test the fusion of the scores
using a GBR model [25], which provided the cross-validation
results. To obtain the evaluation subset predictions, we em-
ployed the scores from the whole training subset to train a fi-
nal fusion GBR model that was used to perform the fusion of
scores coming from the acoustic and transcript-based models
for the challenge evaluation. For MMSE prediction, we fol-
lowed a similar procedure but simply averaged the scores from
the different models instead of using a GBR.

4. Results and Discussion
In this section, we present our results on both AD detection
and MMSE prediction tasks. For evaluation metrics, we used
the same metrics as proposed in [18], namely, accuracy, preci-
sion, recall, and F1 score for detection and Root Mean Square
Error (RMSE) for MMSE prediction. For simplicity, in cross-
validation results (10 folds) we only report accuracy and RMSE.

4.1. Cross-validation results

Table 1 presents the cross-validation results with the proposed
models for AD detection and MMSE prediction tasks. From the
comparison of acoustic and transcript models, we can observe
that the transcript-based model performed better than the acous-
tic model for AD detection but worse in MMSE prediction. The
use of silence features alone did not provide high accuracy to
differentiate between AD and CC groups. However, when we
concatenated silence features with x-vectors PCA-transformed
coefficients, denoted as Acoustic+silence in Table 1, we ob-
tained an absolute 2.4% improvement in AD detection accuracy
compared to using acoustic features alone, implying that acous-
tic and silence features may have complementary information.
For MMSE prediction task, we obtained a small improvement
in RMSE value after concatenation (0.03, absolute).

We further fused acoustic and transcript-based model
scores to exploit their complementary information. The fusion
model showed 79.2% accuracy and 5.93 RMSE, which indi-
cates a 0.5% and 0.31 improvement compared to the best indi-
vidual model, respectively. Thus, results suggest that score fu-
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sion provides improvements in both AD detection and MMSE
prediction. In the same sense, the fusion of Acoustic+silence
and transcript models scores yielded 81.44% AD accuracy and
5.91 RMSE for MMSE prediction, the best cross-validation re-
sults.

A scatterplot of detection scores per subject is shown in
Figure 2. The figure indicates that in the detection task, the
transcript-based analysis is more informative for some speak-
ers, while the acoustic signal analysis is so for some of the oth-
ers. We can observe that for the majority of subjects, the scores
from the two types of models help to cluster the two groups of
speakers in the bottom left (CC) and upper right (AD) parts of
the score bi-dimensional space, suggesting that both acoustic
signal and transcripts contain cues to detect AD. Nevertheless,
a few subjects have opposite results in different models, show-
ing a high score from the transcript-based model but a low score
from the acoustic model and vice versa. This indicates that dif-
ferent models can provide complementary information.

Figure 3 shows the confusion matrices of the models with
the best cross-validation results. We can observe that the mod-
els are not biased to any single class, i.e., the recall for each
class, AD and CC, is similar. Improvement in the fusion model
is reflected with higher diagonal values and lower off-diagonal
values in general, compared to the two individual models.

Table 1: Cross-validation (CV) results for AD detection and
MMSE precition tasks. Best results are marked in bold.

Detection Prediction
Models CV accuracy (%) RMSE

Acoustic 73.21 6.24

Silence 51.20 8.05

Acoustic+silence 75.93 6.21

Transcript 78.70 6.52

Acoustic & Transcript 79.20 5.93

Acoustic+silence & Transcript 81.48 5.91

(a) (b) (c)

Figure 3: Confusion matrices for the detection tasks using (a)
Acoustic model with silence features, (b) Transcript model, (c)
Fusion of Acoustic model with silence features and transcript
model.

4.1.1. Evaluation results

Results for the evaluation subset were obtained from the sub-
mission of our model predictions to the ADReSS challenge or-
ganizers. Table 2 shows the evaluation results of our models
in AD detection and MMSE prediction tasks. Baseline results
are based on the use of the ComParE 2013 feature set [26] and a
linear discriminant analysis classifier (for detection) and MRGC

features [27] with decision trees (for MMSE prediction.) These
baseline results were provided by the ADReSS challenge or-
ganizers [18]. We observed that four of our four models out-
performed the baseline in the detection task by significant mar-
gins, and all of them provided a better RMSE than the baseline.
The model comparison showed similar trends in accuracy on
the evaluation and cross-validation results, but the overall accu-
racy was lower in the evaluation than the cross-validation. For
MMSE prediction, all RMSE values are lower in the evaluation
experiments than in the cross-validation. The model provid-
ing the best accuracy was the score-level fusion of acoustic and
transcript models with 75% accuracy. When silence features
were also used, we obtained the best MMSE prediction results,
5.32 RMSE.

We observed that the acoustic model performance in the
evaluation subset is much lower than its correspondent cross-
validation accuracy, suggesting that the acoustic models might
have been overfitted to the training subset. We observed the
same trends and conclusions from model comparison in cross-
validation and evaluation experiments in Tables 1 and 2, as the
complementarity between transcript and acoustic models.

Table 2: ADReSS challenge evaluation results for the detection
and prediction tasks. Best results are marked in bold.

Detection Prediction
Models Class Prec./Rec. F1 Accuracy

(%)
RMSE

Baseline CC 0.67/0.50 0.57 62.50 6.14
AD 0.60/0.75 0.67

Acoustic CC 0.61/0.45 0.52 58.00 6.08
AD 0.57/0.71 0.63

Acoustic + CC 0.64/0.75 0.69 66.70 5.97
silence AD 0.70/0.58 0.63
Transcript CC 0.79/0.63 0.7 72.92 5.86

AD 0.69/0.83 0.75
Acoustic & CC 0.83/0.63 0.71 75.00 5.37
Transcript AD 0.70/0.88 0.78
Acoustic +
silence &

CC 0.79/0.62 0.70 72.92 5.32

Transcript AD 0.69/0.83 0.75

5. Conclusions and future work
This study presents different approaches to automatically detect
AD and predict MMSE from the speech signal and its associated
transcript, based on the acoustic characterization of the speech
signal and the transcript-based modeling employing DNN. The
employed x-vectors and BERT are considered the current state-
of-the-art techniques in speaker recognition and NLP, respec-
tively. Our results suggest that transcription-based models pro-
vide better results in detection and prediction tasks than acous-
tic models. At the same time, information about the silences
present in the recording improves accuracy for acoustic model-
ing. The best results in cross-validation and evaluation stages
are obtained with the fusion of the scores provided by both the
acoustic and transcript-based models.

In future work, we will explore the x-vector adaptation by
fine-tuning the extractor [16] for the AD/CC detection task.
Also, we will explore the use of automatic speech recognition
systems to obtain the speech transcription and compare results
with human transcription. Lastly, we will explore the use of
BioBERT [28] and other transformer-based architectures for the
detection and assessment of AD.
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