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Abstract
The Mini Mental State Examination (MMSE) is a standard-
ized cognitive health screening test. It is generally admin-
istered by trained clinicians, which may be time-consuming
and costly. An intriguing and scalable alternative is to detect
changes in cognitive function by automatically monitoring in-
dividuals’ memory and language abilities from their conver-
sational narratives. We work towards doing so by predicting
clinical MMSE scores using verbal and non-verbal features ex-
tracted from the transcripts of 108 speech samples from the
ADReSS Challenge dataset. We achieve a Root Mean Squared
Error (RMSE) of 4.34, a percentage decrease of 29.3% over the
existing performance benchmark. We also explore the perfor-
mance impacts of acoustic versus linguistic, text-based features
and find that linguistic features achieve lower RMSE scores,
providing strong positive support for their inclusion in future
MMSE score prediction models. Our best-performing model
leverages a selection of verbal and non-verbal cues, demonstrat-
ing that MMSE score prediction is a rich problem that is best
addressed using input from multiple perspectives.
Index Terms: spoken language processing, spoken language
analysis, healthcare applications, dementia detection

1. Introduction
Scientific progress and improved healthcare standards in many
areas of the world have resulted in older populations than ever
before [1]. Although this is in many ways cause for celebra-
tion, it also introduces new challenges to administering effec-
tive clinical care. A growing elderly population creates an in-
creased demand for a wide range of healthcare services, includ-
ing cognitive assessment. Managing clinician burden and al-
lowing medical professionals to allocate their time effectively
is key to maximizing health outcomes and minimizing patient
distress. One way to do this is by automating lower-risk tasks,
such as routine cognitive assessment.

Cognitive assessment is often performed using straightfor-
ward, clinically validated tests such as the Mini Mental State
Examination (MMSE) [2]. Clinicians administering the MMSE
ask patients a series of questions in five different areas (orien-
tation, registration, attention, memory, and language); their re-
sponses to these questions ultimately result in a score ranging
from 0 (greatest cognitive decline) to 30 (no cognitive decline).
Although simple to administer, the assessment can be burden-
some, requiring the patient to travel to a clinical setting for in-
person assessment. It may also be subject to biases from various
demographic factors [3]. As an alternative to the structured, in-
person MMSE, preliminary evidence suggests that automated
methods can be used to predict MMSE scores from open-ended
narrative descriptions [4]. The availability of easily-accessible,
automated mechanisms could also enable assessment of indi-

viduals at more frequent, regular intervals, potentially facilitat-
ing quicker diagnosis of early-stage dementia [5].

We work toward this goal of simple, efficient dementia di-
agnosis by investigating a wide range of spoken language fea-
tures for automated MMSE score prediction. It is well-known
that dementia can influence spontaneous speech production,
with declines in verbal fluency often manifesting with longer
hesitations, lower speech rates, more frequent repetition, and
other aphasic conditions [6, 7]. We design features that account
for these discourse characteristics, in addition to incorporating
promising linguistic features from prior work. Our findings sug-
gest that a combination of verbal and non-verbal features results
in strong predictive ability. Our contributions are as follows:

1. We propose a suite of features for MMSE score predic-
tion, and run experiments to assess their utility for the
task. We find that a blend of features drawn from mul-
tiple linguistic and discourse perspectives exhibits the
strongest performance.

2. We extract features designed to encode properties of hes-
itation and verbal fluency, which are important biomark-
ers of Alzheimer’s disease. Since identifying these subtle
characteristics directly from audio files remains a chal-
lenging task [8, 9], we leverage the extensive set of an-
notations for non-verbal cues already present in the tran-
scripts. To the best of our knowledge, the use of these
features for MMSE score prediction is novel.

3. We compare the performance of acoustic and textual fea-
tures for the task, finding that models trained only on text
features outperform those trained only on acoustic fea-
tures. This provides strong support for the inclusion of
linguistic features in future models.

4. We analyze patterns in the features found to be most ben-
eficial, finding that function words and discourse con-
nectives offer high predictive value.

Our best-performing model outperforms the existing task
benchmark by a wide margin (RMSE=4.34, a 29.3% decrease
from the acoustic benchmark (RMSE=6.14) at the time of sub-
mission, and a 16.5% decrease from the linguistic benchmark
(RMSE=5.20) added before the camera-ready deadline [4]).

2. Related Work
There is growing interest in automated dementia detection, al-
though most work to date has focused on the binary task of de-
mentia classification (wherein an individual is predicted to ei-
ther have or not have dementia) [10, 11, 12, 13, 4] rather than the
more nuanced problem of assigning continuous MMSE scores
[14, 4]. Unlike most recent natural language processing tasks,
which have migrated almost exclusively to using neural mod-
els with implicitly learned features, small dataset sizes and a
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strong interest in maintaining model interpretability have kept
the problem space of automated dementia detection refreshingly
diverse. Recent high-performing models have relied on a wide
range of engineered features [10, 14, 11, 12, 15, 4], at the same
time that others have explored neural solutions [16, 13].

Although we examine one neural solution for compara-
tive purposes, our focus in this work is on identifying high-
performing interpretable feature sets. Previously, others have
explored both acoustic [11, 15, 4] and linguistic [10, 11, 12,
13] engineered features, primarily for dementia classification
[14, 15, 4] rather than regression [4]. Acoustic features that
have proved successful for the task include fundamental fre-
quency [4], measures of vocal quality [4], Mel Frequency Cep-
stral Coefficients [11, 4], and pause- and duration-based fea-
tures [15], among others. High-performing linguistic features
have included verbal markers (e.g., indicators of repetition or
backtracking) [10], syntax patterns [10, 11], lexical characteris-
tics [10, 12], part-of-speech tags [11, 13], syntactic complex-
ity [11], psycholinguistic traits [11, 13], vocabulary richness
[11, 12], information content [11], repetitiveness [11], n-grams
[12], and sentiment [13]. We draw inspiration from many of
these prior approaches in selecting and designing features for
our MMSE prediction models. Specifically, we make use of an
expanded n-gram set, non-verbal speech and discourse markers
via CHAT transcript [17] annotations, and measures of word fa-
miliarity, imageability, concreteness, sentiment, and typical age
of word acquisition, as well as MFCC acoustic features.

3. Methods
We employ a set of automatically-extracted lexicosyntactic,
psycholinguistic, discourse-based, and acoustic features for es-
timating continuous MMSE scores on a scale of 0 to 30. Al-
though MMSE scores are often present in dementia detection
datasets, the task is generally approached as a binary classifica-
tion problem; its framing as a regression task is under-explored.
We experiment with several machine learning techniques for
representing relationships between our observed features and
the underlying clinical scores. We explored this task in the con-
text of the Alzheimer’s Dementia Recognition through Sponta-
neous Speech (ADReSS) Challenge.

3.1. Data

The ADReSS Challenge dataset is a subset of DementiaBank’s
Pitt Corpus [18]. The Pitt Corpus consists of anonymized
recordings and transcripts of spoken picture descriptions
elicited from participants who were shown the Cookie Theft
picture from the Boston Diagnostic Aphasia Exam [19]. In
the recordings and transcripts, the interviewer asks the partic-
ipant to describe what is in the picture, with no time constraints
and relatively little structure (on occasion, the interviewer prods
the participant for clarification or additional details). The audio
from these conversations was manually transcribed, with dis-
course markers added for false starts, pauses, word repetition,
phrase tracing, incomplete sentences, and other nonverbal cues,
using the CHAT coding system [17]. For the ADReSS Chal-
lenge, the original speech recordings were also segmented into
volume-normalized clips of at most ten seconds in length.

The dataset was divided by the task organizers into training
and test sets. The training set contained 108 transcripts with an
average conversation length (in terms of number of words ut-
tered by the participant) of 98.5 (SD=55.37), and the test set
contained 48 transcripts with an average conversation length

Table 1: Token-level psycholinguistic and sentiment features.

Feature Description

Age of Acquisition The age at which a particular word
is usually learned.

Concreteness A measure of a word’s tangibility.

Familiarity A measure of how often one might
expect to encounter a word.

Imageability A measure of how easily a word
can be visualized.

Sentiment A measure of a word’s valence.

of 93.38 (SD=56.20). The dataset (unlike the Pitt Corpus as
a whole) was gender- and age-balanced across participants with
and without dementia. Individual participant demographic in-
formation, cognitive status (Dementia or Control), and MMSE
score were provided for all training samples; cognitive status
and MMSE score were not provided for test samples. We pre-
processed the transcripts to remove interviewer utterances, as
well as numbers, punctuation, and unwanted symbols.

3.2. Features

We automatically extracted a variety of features from each tran-
script, described in more detail below.

3.2.1. Lexicosyntactic Features

We extracted n-grams for n ∈ {1, 2, 3} from all training set
samples, retaining only n-grams that appeared at least five times
and at most 50 times across the training data and including
coded non-verbal cues (e.g., laugh, cough, breath intake, or
sigh). This resulted in a sparse feature vector for each utter-
ance containing one dimension for each n-gram. Feature values
were filled using TFIDF counts for a given transcript, computed
as follows where TF is the term frequency within the transcript
and DF is the number of documents containing the term:

TFIDF = TF × 1

DF
(1)

Each vector was L2-normalized with unit modulus. The
final vocabulary size across all n-grams was 613.

3.2.2. Psycholinguistic Features

Psycholinguistic characteristics play a key role in verbal pro-
cessing [20], and thus we suspected that they may have high
utility for predicting MMSE scores. We considered four clas-
sic psycholinguistic properties (age of acquisition, concrete-
ness, familiarity, and imageability), as well as sentiment scores.
These features (five total, described further in Table 1) were
all extracted from third-party lexical resources as token-level
scores, which we then averaged across all tokens in a given
transcript. Sentiment scores were obtained using NLTK’s Sen-
timentAnalyzer library,1 and psycholinguistic scores were ob-
tained from an open source repository2 containing scores from
multiple aspects of the MRC Psycholinguistic Database [21].

1https://www.nltk.org/api/nltk.sentiment.html
2https://github.com/vmasrani/dementia\

_classifier
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3.2.3. Discourse-Based Features

To model global discourse patterns across the entire transcript,
we extracted an array of count-based features for discourse tags.
These features include CHAT transcript [17] markers for differ-
ent pause types (including filled pauses containing, e.g., uh or
umm), word repetition, retracing (restarting the same phrase or
segment), and incomplete utterances. Our full list of discourse-
based features included: short pause count, long pause count,
very long pause count, word repetition count, retracing count,
filled pause count, and incomplete utterance count. We nor-
malized these counts by the number of words uttered in the
conversation. We also examined both word count and utterance
count as features, ultimately dropping utterance count due to its
high correlation (r > 0.5) with the former, but retaining word
count, resulting in a total set of eight discourse features.

3.2.4. Acoustic Features

Finally, we extracted acoustic features due to their success in
prior work on dementia detection [11, 22, 15, 4] and MMSE
score prediction [4]. Specifically, we computed Mel Fre-
quency Cepstral Coefficients (MFCCs) and extracted the first 14
MFCCs for each speech segment. We identified mean values,
variance, skewness, and kurtosis for these features, and then
computed the same for velocity and acceleration. This resulted
in a total of 171 audio features for each segment.

3.3. Model

We designed separate models for our textual (lexicosyntac-
tic, psycholinguistic, and discourse-based) and acoustic fea-
tures due to underlying differences in how the data was han-
dled. Since we extracted our acoustic features from local au-
dio segments (maximum duration 10 seconds), we employed a
segment-based model similar to that seen in the existing perfor-
mance benchmark [4]. The model predicted individual MMSE
scores for each discrete segment, and these scores were then
averaged across an entire transcript to produce a transcript-level
MMSE score. We employed a transcript-level model for our
textual features since they were extracted from the transcript as
a whole. We experimented with two high-performing statistical
regression algorithms: Support Vector Regression (SVR) with
a polynomial kernel, regularization parameter C = 100, and
kernel coefficient γ=“auto”; and Gaussian Process Regression
(GP) with a squared exponential kernel, α = 0.1, and optimizer
restarts set to 10. All other parameters for the respective algo-
rithms were kept at their default values.

To empirically validate the utility of our engineered fea-
tures relative to neural alternatives, we also experimented with
a fine-tuned DistilBERT sequence classification model [23] for
the task. We illustrate the architecture for this model in Figure
1. The pre-trained DistilBERT tokenizer processes unseen to-
kens (e.g., discourse tags in our transcripts) as subword units,
allowing it to make use of vocabulary not present in its origi-
nal corpus. Input is thus tokenized and then encoded, and the
resulting hidden representation is subsequently passed to a final
fully-connected network, which applies linear transformations
to the data to ultimately predict a single output neuron repre-
senting the predicted MMSE value for the specific patient.

4. Evaluation
We selected a diverse set of five models for entry to the ADReSS
Challenge:

Figure 1: Model Architecture for DistilBERT.

• ALL: All textual features described in Section 3.2.
• N-GRAM: All lexicosyntactic features.
• SELECTED-FEATURE: A selection of the 90 highest-

performing features from the training corpus. To ob-
tain this feature subset, we employed a Random Forest
regression model with 100 trees and selected features
based on their mean decrease impurity (MDI), where im-
purity was measured as variance. We retained only fea-
tures having MDI values exceeding a predefined thresh-
old (10−3). We show the top ten most important features
measured using this process in Table 4.

• DISTILBERT: The DistilBERT model described in
Section 3.3.

• ACOUSTIC-ALL: All acoustic features.
Although not entered into the ADReSS Challenge, we also

experimented with a selection of the highest-performing acous-
tic features (ACOUSTIC-SELECTED), using the same feature se-
lection technique as applied to SELECTED-FEATURE. We ad-
ditionally ran some experiments using a late fusion neural net-
work model to map acoustic and textual features to the same
hidden space,3 but the model performance was significantly
lower than alternatives in the leave-one-out (LOO) experiment
(RMSE> 10). We report both our LOO cross-validation results
on the training corpus, and our ADReSS Challenge results on
the test data. We report both root mean squared error (RMSE)
and R-squared values for the LOO setting, and RMSE for the
results on the test data.

4.1. Results

We present the results from our LOO cross-validation exper-
iment in Table 2, and our ADReSS Challenge results on the
test set in Table 3. Our LOO experiment included both SVR
and GP versions of each model; since SVR outperformed GP
in more cases and we were limited to a batch of five results
submissions, we submitted only SVR models (along with our
DistilBERT alternative) to the ADReSS Challenge. Our best-
performing model in the LOO experiment was ALL using an
SVR classifier, achieving an RMSE of 4.97. Interestingly, ALL
and ACOUSTIC-ALL exceeded the performance of SELECTED-
FEATURE and ACOUSTIC-SELECTED, respectively, in the LOO
experiments. Although ACOUSTIC-SELECTED was not en-
tered in the ADReSS Challenge, this advantage did not per-
sist for ALL vs. SELECTED-FEATURE on the test data. The
R-squared values in Table 2 provide insight into the variance
from the regression line; R2 = 0.52 is considered moder-
ate [25]. Our highest-performing model on the test set (Table

3Specifically, we encoded words using 300-dimensional English
GloVe embeddings [24] and passed them to a bidirectional LSTM (Bi-
LSTM) layer. We fed the acoustic features for each segment to a sep-
arate LSTM layer, and then we concatenated the resulting hidden rep-
resentations of the Bi-LSTM and LSTM layers. We merged this con-
catenated vector with the vector of discourse-based features, and fed the
merged vector into a feedforward layer with an output linear activation.
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Table 2: LOO results, formatted as RMSE (R2).

Features SVR GP

ALL 4.97 (0.52) 6.43 (-0.001)

N-GRAM 5.00 (0.514) 5.60 (0.225)

SELECTED-FEATURE 5.49 (0.415) 5.31 (0.451)

ACOUSTIC-ALL 6.59 ( -0.093) 6.71 (-0.135)

ACOUSTIC-SELECTED 7.67 ( -0.481) 7.31 (-0.271)

Table 3: Test set results.

Features RMSE

ALL 4.87

NGRAM 4.61

SELECTED-FEATURE 4.34

DISTILBERT 4.63

ACOUSTIC-ALL 6.42

3) employed the SELECTED-FEATURE subset with SVR. This
model (RMSE=4.34) outperformed the best-performing base-
line model on the test set (RMSE=5.20 [4]) by 16.5%.

4.2. Analysis

We analyzed trends in RMSE scores across binned MMSE
score groups to identify weaknesses in our best model and areas
for potential improvement, and present our findings in Figure 2.
We found that in general our model’s predictive power was best
for high MMSE scores, which is likely an artifact of the training
set distribution—although samples in the ADReSS Challenge
dataset are balanced across age and gender, they are not evenly
distributed across the MMSE score continuum.

We also sorted the features in SELECTED-FEATURE in de-
scending order based on their MDI importance score to ana-
lyze the strongest identified patterns, and present the top ten
features in Table 4. Interestingly, we found many non-content
function words and discourse connectives in this list, along with
some discourse-based count features. In general, individuals
with higher MMSE scores created longer descriptions of the
picture and used more content words and complex phrases (e.g.
fall, cookie jar and), whereas those with lower MMSE scores
used shorter descriptions and more pauses and filler words. This
provides evidence that verbal disfluency markers are important
indicators of cognitive status, and also supports our hypothesis
that a wide range of features can be productively leveraged in
tandem for this task.

5. Discussion and Conclusion
Overall, we found text-based features to be more informative
than acoustic features for the MMSE score prediction task. We
speculate that this may be an important distinction between this
and the dementia classification task, for which acoustic features
have achieved considerable success [11, 15]. Our source code

Figure 2: Binned MMSE scores and frequency counts, with
corresponding average RMSE per bin. Frequency counts (left
y-axis and associated histogram bars) and RMSE (right y-
axis and associated line graph) are for test instances, whereas
percentages above histogram bars indicate the corresponding
training set frequency for the same MMSE bins.

Table 4: Top 10 features based on MDI importance.

Features Importance

this 0.284
here 0.050
word count 0.044
fall 0.037
well 0.034
laughs (non-verbal) 0.034
short pause count 0.021
in the 0.015
cookie jar and 0.014
it uh 0.013

is publicly available.4 Further investigation into more informa-
tive features (e.g., acoustic disfluency markers) from the nor-
malized speech signal could potentially transfer insights from
our text-based features to high-performing acoustic analogues.
Likewise, we are interested in leveraging the segment-based
model with the text transcripts (casting utterances as segments).
Finally, while automated MMSE score prediction may make
testing more accessible, reliable, and resource-effective, future
work could additionally explore more precise measures such
as the Montreal Cognitive Assessment (MoCA) or the Repeat-
able Battery for the Assessment of Neuropsychological Sta-
tus (RBANS) [26, 27], which have higher sensitivity than the
MMSE to subtle changes in cognitive decline.
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