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Abstract
This paper describes a multi-modal approach for the au-

tomatic detection of Alzheimer’s disease proposed in the con-
text of the INESC-ID Human Language Technology Laboratory
participation in the ADReSS 2020 challenge. Our classification
framework takes advantage of both acoustic and textual feature
embeddings, which are extracted independently and later com-
bined. Speech signals are encoded into acoustic features us-
ing DNN speaker embeddings extracted from pre-trained mod-
els. For textual input, contextual embedding vectors are first
extracted using an English Bert model and then used either to
directly compute sentence embeddings or to feed a bidirectional
LSTM-RNNs with attention. Finally, an SVM classifier with
linear kernel is used for the individual evaluation of the three
systems. Our best system, based on the combination of linguis-
tic and acoustic information, attained a classification accuracy
of 81.25%. Results have shown the importance of linguistic
features in the classification of Alzheimer’s Disease, which out-
performs the acoustic ones in terms of accuracy. Early stage
features fusion did not provide additional improvements, con-
firming that the discriminant ability conveyed by speech in this
case is smooth out by linguistic data.
Index Terms: Alzheimer’s Disease, automatic multi-modal di-
agnosis, acoustic and textual feature embeddings

1. Introduction
Alzheimer’s Disease (AD), the most common cause of Demen-
tia [1], is a neurodegenerative disorder characterized by loss of
neurons and synapses in the cerebral cortex. Its prevalence in-
creases with age, a study on the U.S. census reported that 3%
of people aged 65-74, 17% of people aged 75-84, and 32%
of people aged 85 and older have AD [2]. As most countries
are experiencing a general increase in average lifespan, it is ex-
pected a rapidly escalation of AD cases worldwide in the next
thirty years [3]. Pharmacological treatments may temporarily
improve the symptoms of the disease, but they can not stop or
reverse its progression. For these reasons, there is an increas-
ing need for additional, noninvasive, and cost-effective tools
allowing a preliminary identification of AD in its early clini-
cal stages. Currently, AD is diagnosed through an analysis of
patient clinical history and disability, neuropsychological tests,
brain imaging and cerebrospinal fluid exams. Although the
prominent symptoms of the disease are alterations of memory
and of spatial-temporal orientation, language impairments are
also an important factor confirmed by current literature [4, 5].
Some of the most well known language impairments found in
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AD speech include naming [4], word-finding difficulties [6],
repetitions [7], an overuse of indefinite and vague terms [8],
and inappropriate use of pronouns [9].

Over the last years, there has been an increased interest
from the research community in the automatic identification of
AD through the analysis of speech and language abilities. Some
studies have focused on syntactic or semantic features [10, 11],
some targeted plain acoustic approaches [12, 13], while other
works have investigated a combination of temporal speech pa-
rameters and lexical measures [14, 15]. Most of these ap-
proaches use handcrafted features and traditional classification
algorithms. Very recent works investigated the use of auto-
matically learned representations from deep neural networks
[16–19]. Regardless of the approach used, the studies exist-
ing in the literature are difficult to analyze and compare due
to the different datasets used. In this scenario, the Alzheimer’s
Dementia Recognition through Spontaneous Speech (ADReSS)
challenge has been proposed, with the aim of providing re-
searchers with a common, statistically balanced and acousti-
cally enhanced dataset to test their approaches [20].

In this work, we present the multi-modal system proposed
by the Human Language Technology Laboratory of INESC-ID
for the ADReSS 2020 challenge. Our framework is designed
to solve the task of automatically distinguishing AD patients
from healthy individuals. In our previous approaches to this
topic [21, 22] we exploited lexical, syntactic, and semantic fea-
tures with measures of local, global, and topic coherence, in
order to provide a more comprehensive characterization of lan-
guage abilities in AD and thus a more reliable identification. In
this work, we take the challenge of using automatically learned
representations instead of traditional and consolidated hand-
crafted features, which already proven to achieve good classifi-
cation results. Inspired by recent studies, we push the limit of
deep neural models to work with extreme conditions, such the
ones in the health domain, in which data scarcity is ordinary.
Additionally, we combine both acoustic and linguistic informa-
tion to have a complete picture of patient’s disabilities, in a sim-
ilar way to the type of information that clinicians receive during
their interactions with patients.

The rest of this work is organized as follows: Section 2
introduces the relevant state on the art on the automatic identi-
fication of AD. Then, in Section 3 and 4, we present the dataset
used in this study and a description of our methodology. Fi-
nally, classification results are reported in Section 5, while con-
clusions are summarized in Section 6.

2. Related work
The computational analysis of speech and language impair-
ments in AD has gained growing attention in recent years. Ini-
tially, existing studies explored engineered temporal and acous-
tic parameters of speech, linguistic features, or a combination
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of both. König et al. [12] computed several temporal speech
features on a dataset composed of 26 AD and 15 healthy sub-
jects, while performing different tasks of isolated and continu-
ous speech. By considering different features according to the
task, the authors achieved an accuracy of 87% in the automatic
identification of AD. Fraser et al. [11] used more than 350 fea-
tures to capture lexical, syntactic, grammatical, and semantic
phenomena from the transcriptions of a picture description task.
With a selection of 35 features, the authors achieved a classifica-
tion accuracy of 81.92% in distinguishing individuals with AD
from healthy controls. Pompili et al. [21] exploited lexical, syn-
tactic, semantic and pragmatic features from the descriptions of
the Cookie Theft picture [23] attaining an accuracy of 85.5% in
the task of classifying AD patients. Gosztolya et al. [14] col-
lected a dataset composed of 75 Hungarian speakers (25 AD,
25 MCI, and 25 healthy subjects) performing two tasks elic-
iting continuous speech. The set of features used considered
demographic attributes, acoustic and linguistic features. Using
only acoustic or linguistic information the authors achieved an
accuracy of 82% in distinguishing AD patients from healthy
subjects. When the two types of features were combined, the
accuracy increases to 86%.

More recently, researchers are shifting their focus towards
more complex architectures capable of overcoming the limita-
tions of traditional approaches. Warnita et al. [18] proposed an
approach relying only on acoustic data computed from continu-
ous speech and gated Convolutional Neural Network (GCNN).
Using majority voting on speaker and the Paralinguistic Chal-
lenge (IS2010) feature set, the authors achieved an accuracy of
73.6%. Karlekar et al. [19], on the other hand, investigated lin-
guistic impairments using CNN, LSTM-RNNs, and a combina-
tion of both. In this way, they obtained an accuracy of 91.1% in
classifying AD patients. Chen et al. [16] went further, propos-
ing a network based on attention mechanism and composed of
a CNN and GRU module. In this way, the architecture should
be able to analyze both local speech patterns and global macro-
linguistic functions. The accuracy achieved in distinguishing
AD patients was of 97.42%. Finally, Zargarbashi et al. [17]
designed a multi-modal feature embedding approach based on
N -gram, i-vectors, and x-vectors. Classification accuracy re-
sults achieved with each of these models were, respectively, of
78.2%, 75.9%, and 75.1%. The joint fusion of the three models
reached an accuracy of 83.6%.

Our work differs from previous studies for several rea-
sons. First, to process the text data, we use contextual em-
beddings vectors as input to two different systems. One based
on the training of a Global Maximum pooling and a bidirec-
tional LSTM-RNNs architectures, and one based on the statis-
tical computation of sentence embeddings. The latter presents
the advantage of being a simple approach, which does not re-
quire the training of deep, data-demanding architectures. Sec-
ond, for the audio recordings, we use DNN speaker embeddings
extracted from pre-trained models. These learned, speaker rep-
resentative vectors have recently shown their potential in the
discrimination of neurodegenerative disorders [24]. To the
best of our knowledge, this is the first work that jointly uses
automatically learned representations from neural models, in-
stead of engineered features, for both audio signals and textual
data. In fact, although existing studies have shown that linguis-
tic impairments in AD appear to be more important than acous-
tic ones, traditional literature provide convincing evidence that
using both source of information will definitively improve the
accuracy of automatic diagnosis methods.

Table 1: Statistical information on the ADReSS dataset

Train Test
Control AD –

Audio Full 00:55:46 01:14:00 01:06:00
Audio chunks 00:30:11 00:26:31 00:26:32
# words (unique) 6097 (567) 5494 (552) 5536 (602)

3. Corpus
The ADReSS dataset contains the speech recordings and corre-
sponding annotated transcriptions of 156 subjects, 78 AD pa-
tients, and 78 healthy control matched for age and gender. Data
were divided into two partitions, training and test sets composed
of 108 and 48 subjects, respectively. Recorded participants
were required to provide the descriptions of the Cookie Theft
picture from the Boston Diagnostic Aphasia Examination [23].
Speech recordings were segmented using Voice Activity Detec-
tion (VAD) and later normalised [20]. The dataset contained
both full enhanced audio, and normalised audio chunks.

In our approach, we have used both the full enhanced au-
dio and the transcriptions. The latter were annotated with dis-
fluencies, filled pauses, repetitions, and other more complex
events. However, to build an automated system requiring a min-
imal annotation effort, we removed all the annotations not cor-
responding to the plain textual representation of words, thus,
better resembling the output that can be generated by an Auto-
matic Speech Recognition (ASR) system. Overall, the whole set
of transcriptions contained 17127 words, of which 1009 were
unique. More detailed information about the duration and size
of the ADReSS dataset are reported in Table 1.

4. Proposed methods
As shown in Figure 1, our multi-modal framework is based on
the independent generation of acoustic and textual feature em-
beddings. Then, we perform an early fusion of the output of the
two systems to obtain a single feature vector containing a com-
pact representation of both speech and language characteristics.
Finally, classification is performed with an SVM classifier with
linear kernel. The two systems are described in the remainder
of this section.

4.1. Acoustic system

The acoustic system is strongly based on two models bor-
rowed from the speaker verification field, i-vectors [25] and x-
vectors [26]. i-vectors are statistical speaker representation vec-
tors that have been recently used for the classification of Parkin-
son’s Disease and for the automatic prediction of dysarthric
speech metrics [27, 28]. X-vectors are discriminative deep neu-
ral network-based speaker embeddings that have outperformed
i-vectors in speaker and language recognition tasks [26, 29, 30]
and have been successfully applied to AD, obstructive sleep ap-
nea and pathological speech detection [24, 31]. Both models
allow to extract a fixed sized feature vector from variable length
audio signal.

Taking into consideration the small size of the ADReSS
dataset, we preferred to exploit already existing pre-trained
models to produce our acoustic feature embeddings, rather than
training them using in-domain challenge data. To this end, for
the x-vectors framework we use both the SRE and the Voxceleb
models. The first was trained mainly on telephone and micro-
phone speech using data from the Switchboard corpus, Mixer 6,
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Figure 1: Summary of embedding-based approaches

and NIST SREs [29]. The latter was trained on augmented Vox-
Celeb 1 and VoxCeleb 2 datasets, which contains speech from
speakers spanning a wide range of different ethnicities, accents,
professions and ages. [29, 32]. This dataset was used also to
build the i-vectors pre-trained model used in this work.

The inputs to the pre-trained SRE and Voxceleb models
consisted of 23 and 30-dimensional MFCC vectors, extracted
with Kaldi [33] from the full recordings, using default values for
window size and shift. Non-speech frames were removed using
energy-based VAD. For the x-vectors model, the last layers of
the pre-trained model, before the softmax output layer, can be
used to compute the embeddings. In this work, we extracted a
512-dimensional x-vectors at layer segment6 of the network.

The i-vectors models, is based on GMM-UBM. The uni-
versal background model (UBM) is used to capture statistics
about intra-domain and inter-domain variabilities and a projec-
tion matrix is used to compute i-vectors. We extracted a 400-
dimensional i-vectors.

4.2. Linguistic system

We followed two different approaches to obtain textual feature
embeddings. First, we investigated the feasibility of training
deep architectures with a corpus of reduced dimension like the
one used in this challenge. Then, this method is compared with
a less data-demanding one, based on the statistical computa-
tion of sentence embeddings using a pre-trained model. Both
strategies rely on contextual word embeddings as input, but
they provide different types of learned representations as out-
put. In fact, to combine the information from the linguistic
and the acoustic systems, the trained architectures are used only
to extract linguistic features from the last layer of the models,
before the final classification. In this way, we obtain a single
768-dimensional feature vector for an entire description. The
sentence embedding approach, on the other hand, provide a sin-
gle 768-dimensional vector for each sentence of a description.
These features are then used to classify between AD patients
and healthy subjects. For both approaches, the first step of the
pipeline deals with the normalization of the data provided in the
ADReSS dataset. In fact, we recall that besides the plain tran-
scription of the descriptions these also contain additional anno-
tations and information that were removed. Then, we encode
each word of the clean transcriptions into a 768-dimensional
context embedding vector using a frozen English Bert model
pre-trained with 12-layers, 768-hidden. This representation is
fed to our two linguistic systems, described hereafter.

The first system is derived from the ComParE2020 Elderly
Challenge baseline [34], and was obtained by adapting the orig-
inal code to deal with the classification of AD. With this ap-

Table 2: Results of different acoustic approaches on the devel-
opment set

Accuracy Precision Recall F1 Score
x-vectors Vox 0.6818 0.6834 0.6919 0.6812
x-vectors SRE 0.7273 0.7273 0.7273 0.7273
i-vectors Vox 0.6818 0.7292 0.6818 0.6645
i-vectors Vox x-vectors Vox 0.7273 0.7273 0.7273 0.7273
i-vectors Vox x-vectors SRE 0.7273 0.7351 0.7273 0.7250

proach, three different neural models are trained on top of con-
textual word embeddings: (i) a Global Maximum pooling, (ii)
a bidirectional LSTM-RNNs provided with an attention mod-
ule, and (iii) the second model augmented with part-of-speech
(POS) embeddings. During training, the loss is evaluated on the
development set.

The second system provides the advantage of not requiring
an additional phase of model training. Similarly to the approach
followed with the acoustic system, we use automatically learned
representations extracted from a pre-trained model to directly
characterize linguistic deficits in AD. The contextual word em-
beddings obtained for each word of the clean transcriptions are
now used to compute an embedding vector of fixed size for each
sentence of a description. Sentence embeddings were success-
fully employed in tasks of humor detection and more generally
sentiments analysis [35, 36] and information retrieval [36]. In
our approach, sentence embeddings are computed by averaging
the second to twelfth hidden layers of each word.

5. Results and discussion
The ADReSS dataset contains only training and test partitions
and for the latter the ground truth is not provided. Thus, in order
to test our approaches, we retain the 20% of the data from the
training set and use it as development set. In this way, we are
left with 86 subjects for training, 22 for development, and 48
for testing. While creating the additional partition, we kept the
dataset gender balanced.

As briefly mentioned, our evaluation method relies on
SVM [37] with linear kernel, based on a liblinear implemen-
tation. The complexity parameter C was optimised during the
development phase. The results reported in Tables 2 and 3 are
obtained using the best complexity configuration. Features were
normalized to have zero mean and unit variance. In the remain-
der of this section we first describe our results on the develop-
ment set for each system independently and then for their final
fusion. Finally, for the best systems, we report the results ob-
tained on the test set.

5.1. Results on the development set

5.1.1. Acoustic system

Results using different automatically learned acoustic features
embeddings are summarized in Table 2. Also in this case, we
explored different independent models and then we do an early
fusion of the best acoustic results attained. From Table 2 is
possible to observe that the x-vectors Voxceleb model usually
achieve a lower classification accuracy. However, when we
combine both i-vectors and x-vectors extracted from this model,
the accuracy resulting from their fusion is comparable to that of
x-vectors using the SRE model, which is currently our best re-
sult on the development set. These outcomes are slightly lower
than those found in the literature review for similar works. In
fact, we recall that Warnita et al. [18] and Zargarbashi et al. [17]

2204



Table 3: Results of different linguistic approaches on the devel-
opment set

Accuracy Precision Recall F1 Score
Global Max Pool. 0.7727 0.7947 0.7728 0.7684
LSTM-RNNs 0.8182 0.8182 0.8182 0.8182
LSTM-RNNs Pos 0.8636 0.8667 0.8637 0.8634
GMax/LSTM-RNNs/LSTM-RNNs-Pos 0.9091 0.9091 0.9091 0.9091
Sentence emb. - maj. vote 0.7727 0.7947 0.7728 0.7684

obtained an accuracy of 73.6%, 75.9%, and 75.1%, using, re-
spectively a gated CNN with the IS10 acoustic feature set and
the i-vectors/x-vectors paradigms. Our approach, however, is
different from the ones of these authors since we are using a
smaller dataset and do not rely on DNN training. Nevertheless,
since we are interested in corroborating these results on the test
set, we select the acoustic feature embeddings extracted from
the pre-trained x-vectors SRE model for the evaluation.

The use of pre-trained acoustic embedding extractors has
been motivated by the reduced size of the ADReSS dataset,
that we considered to be insufficient for data hungry deep learn-
ing approaches. To confirm this, we also trained an end-to-end
LSTM model for AD classification. The architecture consisted
of one dense and two LSTM layers with a softmax activation
function. The network took as input chunks of 500 voiced
frames using 23-dimensional MFCC with delta and delta-delta.
Majority voting was performed over all the chunks from the
same speaker to generate a single prediction per speaker. This
end-to-end approach performed very poorly, with an accuracy
around chance result in the development set, confirming our ex-
pectations that the ADReSS dataset is not suited for training a
deep learning end-to-end system.

5.1.2. Linguistic system

Results obtained with our different linguistic systems are sum-
marized in Table 3. This table reports the performance for the
features trained with the three neural models, their fusion, and
finally for the sentence embeddings approach. For the latter,
we present only results achieved using a majority voting over
the entire description. Our best classification result attained an
accuracy of 90.91% on the development set using the fusion of
the linguistic features sets generated by the three neural mod-
els. Comparing this result with the one obtained by sentence
embeddings, we acknowledge that neural models outperform
simpler strategies even with constrained training data. This was
somehow surprising and in contradiction with similar experi-
ments performed with the acoustic system. We hypothesize that
the large amount of contextual information provided by the Bert
model is helpful in overcoming the limited size of the ADReSS
dataset. Nevertheless, we suspect that the high accuracy at-
tained with neural models may be too optimistic, due to the fact
of having used the development set both for testing and evaluat-
ing the model’s loss. Thus, in spite of their lower outcome, the
sentence embeddings approach is selected as one of the systems
to be evaluated on the test set. In fact, on the one hand, we think
that they may represent a more reliable system, since do not re-
quire additional training. On the other hand, we also observe
that they achieve higher classification scores, when compared
with a similar approach based on GloVe embeddings [38], thus
corroborating our decision.

5.1.3. Fusion of systems

To provide a comprehensive evaluation of speech and language
impairments in AD, the best results obtained with both the

Table 4: Results of different acoustic and linguistic approaches
on the test set

Class Accuracy Precision Recall F1 Score
Fusion of system AD 0.8125 0.9412 0.6667 0.7805

non-AD 0.7419 0.9583 0.8364
Sentence embedding AD 0.7292 0.8235 0.5833 0.6829

non-AD 0.6774 0.8750 0.7636
x-vectors SRE AD 0.5417 0.5417 0.5417 0.5417

non-AD 0.5417 0.5417 0.5417

acoustic and the linguistic systems where combined together
in an early fusion fashion. We merged the x-vectors features set
obtained with the SRE model with the combination of linguistic
feature sets (GMax/LSTM-RNNs/LSTM-RNNs-Pos) generated
by the three neural models. Unfortunately, results on the devel-
opment set using this extended set of features did not provide
any further improvements with respect to using the linguistic
system alone. We believe that, in this case, the predictive ability
of linguistic features completely override acoustic ones. Never-
theless, we select the combination of these two systems as our
main system for the evaluation.

5.2. Results on the test set

Overall, we submitted three systems for the evaluation: (i) the
fusion of the best results achieved by the linguistic and acoustic
systems, (ii) sentence embeddings, (iii) the best acoustic sys-
tem. A summary of these results is reported in Table 4. In
general, we found a consistent impoverishment of the perfor-
mance of our methods when evaluated on the test set, even for
those systems based on features that do not required a train-
ing phase. The first system submitted achieved the best result,
with an accuracy of 81.25%, showing that the use of deep archi-
tectures with contextual word embeddings are actually able of
overcoming the limitation of a constrained dataset. The worse
result is achieved by the acoustic system alone, with an average
accuracy of 54.17%. This outcome is lower than the one found
in the ADReSS baseline (62.50%) [20], indicating that there is
still room for improving our acoustic approach. We relied on
pre-trained models to overcome the lack of data, but we ended
up with a similar problem. It is likely the case that an adap-
tation of these models to the characteristics of elderly speech
would allow for better performance.

6. Conclusions
In this work we presented a multi-modal approach to the clas-
sification of AD based on automatically learned feature repre-
sentations. Both for the acoustic and linguistic systems, we in-
vestigated feature embedding vectors extracted from pre-trained
models, as well as the feasibility of training deep neural archi-
tectures. Using a combination of both approaches, we attained
an accuracy of 90.91% and 81.25% on the development and test
sets, respectively. Our results showed that acoustic systems, in
comparison to linguistic ones, require more data in order to im-
prove the predictive ability of neural models and obtain fine-
tuned features representations. Nonetheless, it is worth noting
that linguistic systems used manually generated transcriptions.
In the presence of potential ASR errors –which are commonly
exacerbated in the case of atypical speech, such as AD speech–,
acoustic systems may play a more relevant role. The impact of
these errors could be an interesting analysis for future work, as
well as the investigation of robust acoustic methods and models
specially tailored to the elderly and AD speech characteristics.
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I. Hoffmann, “Identifying Mild Cognitive Impairment and mild
Alzheimer’s disease based on spontaneous speech using ASR and
linguistic features,” Computer Speech & Language, vol. 53, pp.
181–197, 2019.

[15] B. Mirheidari, D. Blackburn, T. Walker, M. Reuber, and H. Chris-
tensen, “Dementia detection using automatic analysis of conver-
sations,” Computer Speech & Language, vol. 53, pp. 65–79, 2019.

[16] J. Chen, J. Zhu, and J. Ye, “An Attention-Based Hybrid Network
for Automatic Detection of Alzheimer’s Disease from Narrative
Speech,” Proc. Interspeech 2019, pp. 4085–4089, 2019.

[17] S. Zargarbashi and B. Babaali, “A Multi-Modal Feature Embed-
ding Approach to Diagnose Alzheimer Disease from Spoken Lan-
guage,” arXiv preprint arXiv:1910.00330, 2019.

[18] T. Warnita, N. Inoue, and K. Shinoda, “Detecting Alzheimer’s
Disease Using Gated Convolutional Neural Network from Audio
Data,” arXiv preprint arXiv:1803.11344, 2018.

[19] S. Karlekar, T. Niu, and M. Bansal, “Detecting linguistic charac-
teristics of Alzheimer’s dementia by interpreting neural models,”
arXiv preprint arXiv:1804.06440, 2018.

[20] S. Luz, F. Haider, S. de la Fuente, D. Fromm, and B. MacWhin-
ney, “Alzheimer’s dementia recognition through spontaneous
speech: The ADReSS Challenge,” in Proceedings of INTER-
SPEECH 2020, Shanghai, China, 2020.

[21] A. Pompili, A. Abad, D. M. de Matos, and I. P. Martins, “Prag-
matic Aspects of Discourse Production for the Automatic Identi-
fication of Alzheimer’s Disease,” IEEE Journal of Selected Topics
in Signal Processing, vol. 14, no. 2, pp. 261–271, 2020.

[22] ——, “Topic coherence analysis for the classification of
Alzheimer’s disease.” in IberSPEECH, 2018, pp. 281–285.

[23] H. Goodglass, E. Kaplan, and B. Barresi, The Boston Diag-
nostic Aphasia Examination, Baltimore: Lippincott, Williams &
Wilkins, 2001.

[24] C. Botelho, F. Teixeira, T. Rolland, A. Abad, and I. Trancoso,
“Pathological speech detection using x-vector embeddings,” arXiv
preprint arXiv:2003.00864, 2020.

[25] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet,
“Front-end factor analysis for speaker verification,” IEEE Trans-
actions on Audio, Speech, and Language Processing, vol. 19,
no. 4, pp. 788–798, 2010.

[26] D. Snyder, D. Garcia-Romero, D. Povey, and S. Khudan-
pur, “Deep Neural Network Embeddings for Text-Independent
Speaker Verification.” in Interspeech, 2017, pp. 999–1003.

[27] Y. Hauptman, R. Aloni-Lavi, I. Lapidot, T. Gurevich, Y. Manor,
S. Naor, N. Diamant, and I. Opher, “Identifying distinctive acous-
tic and spectral features in Parkinson’s disease,” Proc. Interspeech
2019, pp. 2498–2502, 2019.

[28] I. Laaridh, W. B. Kheder, C. Fredouille, and C. Meunier,
“Automatic prediction of speech evaluation metrics for dysarthric
speech,” in Proc. Interspeech 2017, 2017, pp. 1834–1838.
[Online]. Available: http://dx.doi.org/10.21437/Interspeech.2017-
1363

[29] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudan-
pur, “X-vectors: Robust dnn embeddings for speaker recognition,”
in 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2018, pp. 5329–5333.

[30] D. Snyder, D. Garcia-Romero, A. McCree, G. Sell, D. Povey, and
S. Khudanpur, “Spoken Language Recognition using X-vectors.”
in Odyssey, 2018, pp. 105–111.

[31] J. M. Perero-Codosero, F. Espinoza-Cuadros, J. Anton-Martin,
M. A. Barbero-Alvarez, and L. A. Hernandez, “Modeling Ob-
structive Sleep Apnea voices using Deep Neural Network Em-
beddings and Domain-Adversarial Training,” IEEE Journal of Se-
lected Topics in Signal Processing, 2019.

[32] A. Nagrani, J. S. Chung, and A. Zisserman, “VoxCeleb:
A Large-Scale Speaker Identification Dataset,” in Proc. In-
terspeech 2017, 2017, pp. 2616–2620. [Online]. Available:
http://dx.doi.org/10.21437/Interspeech.2017-950

[33] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz et al.,
“The Kaldi speech recognition toolkit,” in IEEE 2011 workshop
on automatic speech recognition and understanding, no. CONF.
IEEE Signal Processing Society, 2011.

[34] B. W. Schuller, A. Batliner, C. Bergler, E.-M. Messner, A. Hamil-
ton, S. Amiriparian, A. Baird, G. Rizos, M. Schmitt, L. Stappen
et al., “The INTERSPEECH 2020 Computational Paralinguistics
Challenge: Elderly Emotion, Breathing & Masks,” Proceedings
INTERSPEECH. Shanghai, China: ISCA, 2020.

[35] I. Annamoradnejad, “ColBERT: Using BERT Sentence Embed-
ding for Humor Detection,” arXiv preeprint arXiv:2004.12765,
2020.

[36] Q. V. Le and T. Mikolov, “Distributed Representations of Sen-
tences and Documents,” in International conference on machine
learning, 2014, pp. 1188–1196.

[37] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
learning, vol. 20, no. 3, pp. 273–297, 1995.

[38] B. Mirheidari, D. Blackburn, T. Walker, A. Venneri, M. Reuber,
and H. Christensen, “Detecting Signs of Dementia Using Word
Vector Representations.” in Interspeech, 2018, pp. 1893–1897.

2206


