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Abstract
The paper describes a multimodal approach to the automated
recognition of Alzheimer’s dementia in order to solve the
ADReSS (Alzheimer’s Dementia Recognition through Sponta-
neous Speech) challenge at INTERSPEECH 2020. The pro-
posed method exploits available audio and textual data from the
benchmark speech dataset to address challenge’s two subtasks,
a classification task that deals with classifying speech as demen-
tia or healthy control speech and the regression task of deter-
mining the mini-mental state examination scores (MMSE) for
each speech segment. Our approach is based on evaluating the
predictive power of different types of features and on an exhaus-
tive grid search across several feature combinations and differ-
ent classification algorithms. Results suggest that even though
TF-IDF based textual features generally lead to better classifi-
cation and regression results, specific types of audio and read-
ability features can boost the overall performance of the classi-
fication and regression models.
Index Terms: Cognitive Decline Detection, Computational
Linguistics, Natural Language Processing, Speech Processing

1. Introduction
Alzheimer’s Disease (AD) is the most common underlying
cause of dementia, a neurodegenerative disease that leads to
behavior and personality changes, such as decline in cognitive
abilities and memory loss. AD is age-related and due to recent
population trends suggesting large increases in elderly popula-
tion [1], development of efficient methods for AD early detec-
tion and management has become of utmost importance.

The ADReSS (Alzheimer’s Dementia Recognition through
Spontaneous Speech) challenge [2] at INTERSPEECH 2020 [3]
deals with automatic detection of AD from audio recordings and
corresponding transcripts of subjects participating in a picture
description task. The challenge defines two subtasks: Subtask
1 is a binary classification, i.e., to determine whether a patient
has dementia or not, and SubTask 2 aims to determine the mini-
mental state examination scores (MMSE) for each patient, i.e.,
a regression task.

The related work on AD classification reports accuracies of
up to around 80% when best features are selected from a large
set of linguistic and audio features [4, 5], or just linguistic fea-
tures [6]. The accuracy in most cases decreases to below 70% in
studies that consider only audio features [7], an exception being
a study by Haider et al. [8], where the best accuracy of 78.7% is
reported when an active data representation (ADR) feature ex-
traction method is employed. When it comes to the regression
task of determining the MMSE, we are aware of just one study
that tackled it, reporting a mean absolute error (MAE) of 3.83
[5].

Due to findings from the related work and a relatively small
size of the training set (108 training examples), our approach to

both tasks was based on an extensive grid search over all possi-
ble feature combinations for each of the several pre-chosen clas-
sifiers and regressors1. These feature sets include several audio
features (e.g., MFCC, ADR...) and a diversity of text features,
covering different aspects of text transcripts (e.g., semantic fea-
tures such as unigrams, syntactic features based on universal
dependencies, which are in recent natural language processing
research replacing the traditional part-of-speech tags and lan-
guage dependant parsers, and statistical features indicating the
readability of the text). The main contributions of this paper are
as follows:

• Systematic evaluation of 16 distinct feature sets engi-
neered from the audio signals and text transcripts and
an insight into how they can be combined in the most
efficient way.

• Deployment of novel universal dependency based fea-
tures, and additional readability features for automated
AD detection (i.e. ARI [9], GFI [10] and SMOG [11]).

• Development of a number of dementia AD classification
and regression models with good performance and an
available code for all experiments.

2. Methodology
Our core methodology consists of three parts, feature engineer-
ing (Section 2.1), choosing the learning algorithms (Section 2.2)
and selection of the best feature combinations (Section 2.3).

2.1. Feature engineering

Features employed in the conducted experiments can be roughly
divided into four distinct types, audio features, TF-IDF fea-
tures, readability features and embeddings.

2.1.1. Audio features

All audio features were generated from the normalised audio-
chunks, i.e., the .wav files extracted from the audio recordings
of the AD and non-AD patient’s speech after applying voice
activity detection [2]. The following feature sets were con-
structed:

• Mean MFCC: means of first 13 mel-frequency cepstral
coefficient features averaged across all audio recordings
of each patient’s speech. Window width of 25 ms and a
stride of 10 ms were used in the extraction.

• ADR: an active data representation cluster based method
for feature extraction [8] employed on Geneva minimal-
istic acoustic parameter set (eGeMAPS) and MFCC

1Code for the experiments is available under the MIT license at
https://github.com/matejMartinc/ADReSSchallenge.
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features. Note that in our implementation, the self-
organising maps (SOM) [12] clustering was replaced by
a more widely used k-means clustering, with k=30.

• Average duration of audio recordings of each patient.

In addition, we also tested predictive power of mean root-
mean-square, zero-crossing rate, spectral bandwidth, rolloff and
centroid of audio samples, and the ADR feature extraction
method on the emobase, ComParE 2013 and Multi-Resolution
Cochleagram (MRCG) feature sets, as in [8], but did not use
them in further experiments due to bad performance.2

2.1.2. TF-IDF features

TF-IDF features, which have been used in previous AD detec-
tion studies [13], were generated from the transcriptions of au-
dio recordings3 by generation of word and character n-gram to-
kens and employing bag-of-words vectorization and term fre-
quency - inverse document frequency (TF-IDF) weighting on
the derived tokens. The following tokens were used in vector-
ization and TF-IDF weighting:

• Unigram tokens, i.e., single words

• Bigram tokens, i.e., sequences of two adjacent words

• Char4gram tokens, i.e., sequences of four adjacent
characters

• Suffix tokens, i.e., word suffixes of length 3

• POS tag bigrams, i.e., sequences of two adjacent part-
of-speech tags

• Grammmatical dependency (GRA) features modelling
grammatical relations between words in the input text,
generated by the organizers of the challenge [2].

• Universal dependency (UD) features, i.e., a sequential
representations of grammatical relations generated using
the Stanford universal dependency parser [14]. For each
word in the text, a tuple containing the type of grammat-
ical relation (e.g., a determiner, nominal subject...) and
the distance between the word at hand and its related
word is generated. Unigrams, bigrams and trigrams of
these tuples are used in our experiments.

2.1.3. Embeddings

Since related work reports promising results when word embed-
dings are used for AD detection [6, 15], we test several doc2vec
embedding representations [16], namely doc2vec text repre-
sentations generated from transcript texts, doc2vec POS tags
representations generated from transcript POS tag sequences,
doc2vec GRA representations generated from GRA features and
doc2vec UD representations generated from UD feature se-
quences. We only use doc2vec UD features in further exper-
iments, others were discarded due to bad performance.

2.1.4. Readability features

We experiment with several readability features. The hypoth-
esis is that readability measures capture the complexity of lan-
guage, which can be related to AD (AD patients display a de-
crease in the syntactic complexity of language [17] and have

2The Logistic regression classifiers leveraging each of these fea-
ture sets did not outperform the majority baseline in the 10-fold cross-
validation setting on the train set.

3Parts of the transcriptions that refer to the interviewer, and not the
patient, were not used.

trouble in understanding the meaning of more complex words
[18]):

• Gunning fog index (GFI) [10] was designed to estimate
the years of formal education a person needs to under-
stand the text on the first reading. It is calculated as
GFI = 0.4( totalWords

totalSentences + 100 longWords
totalSentences ), where long-

Words are words longer than 7 characters.

• Automated readability index [9] (ARI) was also de-
signed to return values corresponding to the years of ed-
ucation required to understand the text and is calculated
as ARI = 4.71( totalCharacters

totalWords ) + 0.5( totalWords
totalSentences )− 21.43

• The SMOG grade (Simple Measure of Gobbledy-
gook) [11] is a readability formula mostly used
for checking health messages and is calculated as

SMOG = 1.0430
√

num3Syllables 30
totalSentences3.1291,

where the num3Syllables is the number of words with
three or more syllables.

• Number of unique words (NUW), normalized with the
number of all words in the transcript.

Besides the readability features above, we also experi-
mented with Flesch reading ease [19], Flesch-Kincaid grade
level [19] and Dale-Chall [20] readability formulas, which were
not used in further experiments due to bad performance.

2.2. Learning algorithms

Classification experiments were conducted by using four dis-
tinct classification algorithms from the Scikit library [21],
namely Xgboost [22] (with 50 gradient boosted trees with max
depth of 10), Random forest (with 50 trees of max depth of 5),
SVM (with linear kernel and 2 box constraint configurations, 10
and 100) and Logistic regression (LogR) (with 2 distinct regu-
larization configurations, 10 and 100). Regression experiments
were conducted by using four distinct regression algorithms,
namely Xgboost, SVM, Random forest and Linear regression
(LinR). For Xgboost, SVM and Random forest same hyperpa-
rameters were used as for classification, while for LinR we used
default parameters.

2.3. Exploration of feature space and model selection

Our approach is based on the early future-level fusion between
different types of audio and textual features and relies on iden-
tification of feature combinations with the best synergy effect
(see Figure 1). In order to do that, an extensive grid search
across 65,535 combinations of 16 different feature sets (i.e., 4
audio, 7 TF-IDF, 1 embeddings and 4 readability feature sets)
for each of the learning algorithms was conducted on the train
set in a 10-fold cross-validation (CV) setting. For classification,
accuracy is used for the performance evaluation, and for regres-
sion, root mean square error (RMSE) is used, same as for the
official challenge evaluation [2].

The ADReSS challenge allows for submission of 5 distinct
test set prediction tries. Therefore we identify 5 best perform-
ing classification models with non-identical predictions on the
test set according to the grid search results. Their predictions on
the test set are used for a majority vote ensemble, the output of
which is used as one of the submissions. The other four submis-
sions are test set predictions of the four best performing classi-
fication models. 5 submissions for regression are generated by
first identifying 4 best performing regression models that do not
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Figure 1: Exploration of the feature space. Four types of fea-
tures are combined by a concatenation of feature vectors (i.e.,
early feature-level fusion) and a grid search across all feature
combinations is conducted. The best performing models em-
ploying best feature combinations are used for generating pre-
dictions on the test set, which are finally used for the ensembling
(late prediction-level fusion).

produce identical predictions on the test set and then calculat-
ing the mean of the predicted MMSE scores of these four best
performing models in order to produce the fifth submission.

3. Experimental setting
In this Section we quickly overview the dataset and present the
experiments conducted and results achieved in the scope of the
ADReSS challenge. The Section is divided into three parts,
Dataset (Section 3.1) Feature evaluation (Section 3.2) and Ex-
perimental results (Section 3.3).

3.1. Dataset

The dataset consists of recordings and transcripts of Cookie
Theft picture descriptions by 78 AD and 78 non-AD partici-
pants of the Boston Diagnostic Aphasia Exam [23] and is bal-
anced in terms of gender and age. Altogether the dataset con-
tains 4,076 normalized speech segments, on average 24.86 per
participant, and one transcript per each participant. It is split
into a train set containing 108 examples and the test set contain-
ing 48 examples. For details, see [2].

3.2. Feature evaluation

In this experiment we explore the classification and regression
performance of distinct feature sets in the 10-fold CV setting
on the train set. SVM with box constraint of 10 was used in the
feature evaluation experiments. Results for classification are
presented in Figure 2. In general, TF-IDF features outperform
all other feature types and among them, the best features are
Char4grams that by themselves achieve the accuracy of 86.4%.
While all TF-IDF feature sets lead to accuracy of about 70%
or more, other types of features generally achieve accuracies
between 50% and 60%, the only exception being ARI, which
achieves accuracy just slightly above 60%. The worst perform-
ing feature is another readability measure, GFI, achieving accu-
racy just slightly above the chance level (51.8%). Among the
audio features, the best performing are MFCC features (accu-
racy of 57.6%) and the worst are ADR features generated on
the eGeMAPs (accuracy of 54.7%).

The feature performance on the regression task is some-
what consistent with the performance on the classification task
(See Figure 3). TF-IDF features outperform other feature types
and Char4grams are again the best features (achieving RMSE
of 5.32). Also, ARI is again the best readability feature. On
the other hand, MFCC features, which showed the best perfor-
mance among audio features in the classification setting, are
the worst features in the regression setting (achieving RMSE of
8.66). The best performing audio feature is the mean duration
of the audio clips.

3.3. Experimental results

Results of the five best performing classification and regression
models are presented in Table 1. The best classification accu-
racy of 77.8% on the official test set was achieved when a LogR
model with a regularization strength (C) of 10 was trained on
GFI, NUW, Duration, Char4gram, Suffix, POS tag and UD fea-
tures. The same model also achieved the best accuracy in the
CV setting, a much higher accuracy of 92.7%. On the other
hand, for regression, the best RMSE score of 4.4388 on the test
set was achieved by the SVM model with the box constraint of
10 trained on NUW, Bigram, Char4gram, Suffix, POS tag and
GRA features, which performed the worst out of the four best
regression models in the CV setting. While the ensemble of
models produced the worst classification result on the test set,
it ranked as second best on the regression task, although its per-
formance was still much worse than the performance of the best
model.

4. Discussion
The large discrepancies between the CV and test set classifi-
cation performances suggest all the models overfitted, since all
the models performed worse on the official test set than in the
CV setting. The same can be said for four out of five regres-
sion models. Overfitting could be to some extent explained with
the small size of the train set and might be limited by reducing
the number of features. The one exception to the overfitting is
the best performing regression model, which achieved a better
RMSE score on the test set than in the CV setting. A more thor-
ough error analysis would be required to explain this deviation.

Logistic/linear regression and SVMs with linear kernels
proved better than Xgboost and Random forest models for both
tasks. Some previous studies [24] suggest that these models
work especially well on textual features and this could also ex-
plain their good performance on the tasks at hand, where textual
TF-IDF features are the best performing features.

Besides the best performing textual features (Char4grams)
and POS tags, which appear in most of the best classification
and regression feature combinations, GFI and NUW also appear
in 5 out of 9 best combinations, which suggests that readability
measures add some useful information to the models. Interest-
ingly, UD features only appear in best configurations for classi-
fication. When it comes to audio features, the best performing
feature for classification appears to be Duration (appearing in 3
out of 5 best combinations) and the best performing feature for
regression is MFCC ADR, appearing in 3 out of 4 best combi-
nations. The doc2vec UD embedding features did not appear in
any of the best combinations, most likely due to a very small
train set which prohibits the successful training of an efficient
embedding model.

Overall, our results outperform the baseline by a large mar-
gin [2] and are slightly worse than the results reported in the
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Figure 2: SVM (with box constraint of 10) classification performance with different features.

Figure 3: SVM (with box constraint of 10) regression performance with different features.

Table 1: Results of the Cross validation (CV) and official test set experiments in terms of accuracy and RMSE.

Classification
Feature set Model CV score Test set score

GFI,NUW,Duration,Character 4-grams,Suffixes,POS tag,UD LogR (C=100) 0.927 0.7708
Duration,Character 4-grams,Suffixes,POS tag,UD SVM (C=10) 0.918 0.7500
NUW,Duration,Unigram,Suffixes,POS tag,UD LogR (C=10) 0.917 0.7500
GFI,Duration,Unigram,Bigram,Suffixes,POS tag,UD SVM (C=10) 0.908 0.7500
duration,Unigram,Bigram,Suffixes,POS tag,UD LogR (C=10) 0.907 /
Ensemble / / 0.7292

Regression
Feature set Model CV score Test set score

GFI,NUW,MFCC ADR,Bigram,Character 4-grams,Suffixes,POS tag LinR 5.008 5.1878
GFI,NUW,MFCC ADR,Character,4-grams,Suffixes,POS tag LinR 5.021 5.4312
GFI,MFCC ADR,Character 4-grams,Suffixes,POS tag LinR 5.032 5.4483
NUW,Bigram,Character 4-grams,Suffixes,POS tag,GRA SVM (C=10) 0.505 4.4388
Ensemble / / 5.0574

related work [4, 5], which have been achieved on a much larger
and also unbalanced DementiaBank’s Pitt corpus [25].

5. Conclusions
In this paper we have presented a multimodal approach to the
ADReSS (Alzheimer’s Dementia Recognition through Spon-
taneous Speech) challenge. The proposed method relies on
a feature-level fusion between different feature types and an
extensive grid search across all feature combinations, and ex-
ploits both audio and textual data for the automatic detection of
Alzheimer’s dementia.

The results suggest that a multimodal approach leads to bet-

ter performance than unimodal approaches but also suggest cau-
tion about using many different features due to the overfitting
risk. Besides testing new features (e.g., clinical features such
as concept counts), our future work will therefore be focused
on reducing the number of features in order to avoid overfitting,
while still sustaining the predictive performance of the classifi-
cation and regression models.
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