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Abstract
This paper investigates the use of audio and text embed-

dings for the classification of emotion dimensions within the
scope of the Elderly Emotion Sub-Challenge of the INTER-
SPEECH 2020 Computational Paralinguistics Challenge. We
explore speaker and time dependencies on the expression of
emotions through the combination of well-known acoustic-
prosodic features and speaker embeddings extracted for differ-
ent time scales. We consider text information input through
transformer language embeddings, both isolated and in combi-
nation with acoustic features. The combination of acoustic and
text information is explored in early and late fusion schemes.
Overall, early fusion of systems trained on top of hand-crafted
acoustic-prosodic features (eGeMAPS and ComParE), acous-
tic model feature embeddings (x-vectors), and text feature em-
beddings provide the best classification results in development
for both Arousal and Valence. The combination of modali-
ties allows us to reach a multi-dimension emotion classifica-
tion performance in the development challenge data set of up to
48.8% Unweighted Average Recall (UAR) and 61.0% UAR for
Arousal and Valence, respectively. These results correspond to
a 16.2% and a 8.7% relative UAR improvement.
Index Terms: computational paralinguistics, speech emotion
recognition, speaker embeddings, text embeddings, elderly

1. Introduction
The Elderly Emotion Sub-Challenge of the INTERSPEECH
2020 Computational Paralinguistics Challenge (Com-
ParE2020) [1] focuses on the emotion classification of
spontaneous narratives uttered by German-speaking elderly.
Two emotional dimensions are considered: Arousal – how
affected the speaker is – and Valence – “positiveness” of the
emotion [2], with levels mapped to Low, Medium, and High.

Speech Emotion Recognition and Understanding is a very
active research field, in particular now that it is quite ubiqui-
tous in people’s lives. Virtual assistants or robots have a crucial
role with elderly populations since they can serve as compan-
ions to assist the elder in several daily activities, towards healthy
ageing and well-fare. However, assistants can only be seen as
real companions if they understand the emotional states of their
users and fine-tune their actions towards such states.

To address the challenges of emotion recognition proposed
in the ComParE 2020 Elderly Emotion Sub-Challenge, we in-
vestigate the relevance and relations of audio and text features,
speaker identity, time granularity and idiosyncratic traits of
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emotions. Our goal is to understand the impact of distinct fea-
tures together with specific speaker-dependent characteristics
on the recognition of Valence/Arousal. To this end, our pro-
posed approach is structured as follows. First, we explore the
acoustic feature sets. We investigate the performance of classic
acoustic-prosodic feature sets for emotion classification and of
acoustic speaker embeddings (x-vectors). As well, we explore
the combinations of these two approaches. Then, we investigate
the discriminative ability of long-context text embeddings based
on transformers for the classification of emotions. Finally, we
combine text and audio features to assess the possible comple-
mentary information in each of the targeted emotional dimen-
sions. For that purpose, we consider two simple combination
schemes based either on early fusion at the feature level or late
fusion at the systems’ decision level. Overall, the proposed sys-
tem achieves up to 48.8% Unweighted Average Recall (UAR)
and 61.0% UAR for Arousal and Valence multi-dimension emo-
tion classification in the development challenge data set.

The rest of this document is organized as follows: Section
2 introduces the relevant state of the art. Then, in Section 3, we
describe our methodology, including different types of features,
fusion strategies, classifiers and additional insights on explored
(unsuccessful) approaches. Experimental results are presented
in Section 4 and the paper ends with conclusions in Section 5.

2. Related Work
The paper of Russel [3] presents a representation of emotional
states as a two-dimensional space, each dimension correspond-
ing to arousal and valence. Although criticized since then,
namely for its incompleteness [4], it has been used in many
emotion recognition tasks. For the task at hand, we are given a
quantitative and dimensional representation of emotional states
– i.e., emotions are represented as combinations of Arousal and
Valence as Low, Medium and High.

The advent of Deep Neural Networks (DNN) brought a
whole new insight on feature engineering. On the one hand,
they have allowed for end-to-end classification approaches, with
the possibility of feeding a model with raw input, without the
need for precomputing features [5]. On the other hand, acti-
vations of the last layers of a DNN that has been tuned and
trained for certain tasks have the potential to properly represent
the classes being classified and, therefore, to be used as features
(embeddings). For instance, the embeddings obtained from net-
works trained for speaker classification – x-vectors [6] – can
be used as a sort of compact speaker representations. Further-
more, the use of x-vectors has been recently extended to other
tasks, such as emotion classification [7] or pathological speech
detection [8].

Copyright © 2020 ISCA

INTERSPEECH 2020

October 25–29, 2020, Shanghai, China

http://dx.doi.org/10.21437/Interspeech.2020-22902067



These neural representations have also played a remarkable
role in Natural Language Processing tasks, as they have fuelled
most of its recent achievements – from language modelling to
machine translation [9]. Pre-trained models for ELMO [10],
GPT [11] or BERT [12] allowed researchers to obtain better re-
sults with fewer data and less computation effort, as they can
easily be fine-tuned and implemented for other tasks. Text em-
beddings have already been used for emotion classification, as
in the case of [13].

Although audio and text can be used separately for emo-
tion classification, it seems that these modalities do not have
the same discrimination power for both dimensions of emotion.
According to Karadogan and Larsen [14], valence is better rec-
ognized with semantic features, whereas arousal is better rec-
ognized with acoustic features. The authors explain it with the
fact that valence is more related to the actual content of what
is being said, while arousal is more associated with the way it
is said. Ultimately, the combination of modalities was reported
to provide better overall results than the ones provided by each
modality alone.

Taking into account the positive impact that the use of fea-
ture embedding representations has recently shown in several
tasks of speech and text classification, as well as the referred
known complementary contribution of both types of modalities
for emotion recognition, we focus here on the study of the pos-
sible synergies of this type of feature embeddings for the Com-
ParE 2020 Elderly Emotion Sub-Challenge.

3. Methods
3.1. Acoustic features

All acoustic features are extracted for fixed-length audio
chunks. The output of the classification of each narrative will
then result from either voting the output of each chunk or from
the classification of the averaged features of all chunks, as de-
scribed next in Subsection 3.4.

3.1.1. Hand-crafted features

In this work, we consider two sets of hand-crafted or
knowledge-based engineered features extracted using the
openSMILE toolkit [15]: ComParE2013 and eGeMAPS.

The ComParE Acoustic Feature Set [16], from the chal-
lenge of 2013, is a set of 6373 functionals over a set of low-level
descriptors (LLD), which has mostly been used for paralinguis-
tic tasks in the last decade. As a very complete set, many of
its features can be redundant or irrelevant for certain tasks. As
well, its size can sometimes be overwhelming for some classi-
fiers.

The Geneva Minimalist Acoustic Parameter Set [17] is a
small set of voice parameters, “based on a) their potential to
index affective physiological changes in voice production, b)
their proven value in former studies as well as their automatic
extractability, and c) their theoretical significance” [17]. It com-
prises both the minimalist set of 62 features (GeMAPS) and the
extended set of 88 features (eGeMAPS), the former append-
ing spectral and frequency-related parameters to the minimal-
ist set. Both have provided results close to those attained by
ComParE feature set in previous benchmark comparisons [17].
Specifically, when averaging results over many databases [17],
eGeMAPS reached the best Unweighted Average Recall (UAR)
for Arousal (79.71%), whereas ComParE reached the best UAR
for Valence (67.17%). In this work, we have used the set of 88
features, eGeMAPS.

3.1.2. Speaker embeddings: x-vectors

X-vectors are fixed-dimensional embeddings, extracted from a
deep neural network, which takes as input variable-length utter-
ances and are trained to discriminate between speakers [6].

In this work, we extracted 512-dimensional x-vectors for
the given audio chunks using a Kaldi speech recognition toolkit
[18] model, pre-trained with the new Vox Celeb dataset (v2) [6,
19]. As the expression of emotion may be speaker-dependent,
we decided to explore the potential of these specific speaker-
modelling features to perform a sort of speaker-wise normaliza-
tion of the acoustic feature vectors. Thus, we aim at exploring
ways of combining previous hand-crafted features obtained for
each chunk with speaker embedding information. To do so, we
have first computed an average x-vector for each speaker over
all their chunks. Then, we have explored the following three
different ways of looking into the dependency of emotions on
speaker and on time:

1. on-line x-vector (oXv) – x-vector obtained from the
same audio chunk;

2. normalized on-line x-vector (nXv) – x-vector obtained
from the same audio chunk normalized by the corre-
sponding average speaker x-vector;

3. speaker x-vector (sXv) – average speaker x-vector.

In the first case, we expect the embeddings to capture the
specific speaker-state information that is present in each short
segment. In the second case, although the goal is the same,
we attempt to emphasize the specific speaker state changes by
removing the average speaker characteristics. In the later, by
feeding the classifier with constant speaker side information,
we expect it to be able to find common characteristics in the
way groups of speakers produce their emotions, thus, attaining
some sort of speaker adaptive training similar to what is done
in automatic speech recognition [20]. In addition to the com-
bination of speaker embeddings with hand-crafted features, in
the experimental section we also investigate the potential of on-
line x-vectors (oXv) and normalized on-line x-vectors (nXv) as
individual feature extractors for emotion recognition.

3.2. Text Features

According to the recent research in pre-trained language mod-
els, multilingual models are able to capture inherent represen-
tations of language and, therefore, to support generalization to
other languages [21]. For our problem, we foresaw that sources
on which German monolingual models had been trained might
not have a sufficient representation for the elderly population.
Whereas the same is probably the case for multilingual mod-
els, as these have shown great ability to generalize, we decided
to use the multilingual one. Indeed, to extract text features,
we used bert-as-a-service [22], with a pre-trained Multilingual
Cased model of 104 languages, 12 layers, 768 hidden states, 12
heads and 110M parameters.

3.3. Classification

For classification, we used the same approach as the official
challenge baseline [1]. This consists of a linear SVM classi-
fier, input data scaling to zero mean and unit standard deviation,
class upsampling to natural factors in train, and complexity op-
timization.

All reported results correspond to the development parti-
tion, with classifiers trained on the train partition. We ran all
classifiers for 6 different values of the complexity parameter:
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1−5, 1−4, 1−3, 1−2, 1−1, 1. Each of the results we present
here corresponds to the best result out of all results obtained for
the same features and different values of complexity.

3.4. Narrative predictions generation

In this task, each narrative is given one label for arousal and
one label for valence (with levels high, medium or low). The
audio of the initial narrative is released as chunks of 5 seconds,
which are assigned to the same labels as the entire narrative.
Consequently, since classification happens narrative-wise, it is
necessary to convert the chunk predictions into a single global
narrative prediction. To address this, the baseline uses Majority
Voting, assigning to each narrative the most frequently assigned
label to its chunks. The UAR is then computed overall narra-
tives. Majority Voting is, thus, our first way of having one label
per narrative.

Then, to allow for the combination of acoustic and text
modalities at the feature-level (v. Subsection 4.4), all feature
vectors for one narrative are summarized into one single feature
vector by means of simple feature vector averaging. Thus, we
took this as another way of having one single classification for
one narrative: classifiers are trained and tested on single narra-
tive averaged vectors.

3.5. Left-Behind Approaches

In the course of the current work, we explored some additional
techniques which provided no remarkable results in terms
of emotion classification, but which are, nevertheless, worth
mentioning:

• Statistical analysis of the text: We explored 1) the cor-
relation between labels and the rates of disfluencies (as
“äh” or “ähm”), 2) the variation of the text-size for each
speaker across emotional states, 3) the average size for
each category, in general.

• Time-informativeness: With the intuition that not all
parts of the same narration are equally informative re-
garding its emotional state, we investigated whether
some parts (audio chunks) tended to be better predicted.

• Summarization: For audio chunks, we expected that the
different text segments had a different contribution on
the overall informativeness of the text. Thus, we at-
tempted to create embeddings from a summarized ver-
sion of the text obtained with the TF-IDF algorithm
(hoping that fewer segments would reduce the disparity
amongst them in terms of relevance).

Despite the discouraging results obtained with those ap-
proaches, we still believe that there is some potential on in-
vestigating methods that leverage differently the contribution of
small excerpts of audio or text chunks for the global prediction
of emotional state in long narratives.

4. Experiments and Results
4.1. Experimental set-up

The data set used in this work is the official corpus released
for the Elderly Emotion Sub-Challenge of the INTERSPEECH
2020 ComParE Challenge, comprising 261 recordings of 87
German-speaking elderly participants. Train, Development,
and Test subsets have the same number of recordings. For each
speaker, there are three different narratives, which are labelled

regarding their Arousal and Valence as High, Medium, or Low.
The recordings of these narratives have been split into smaller
chunks, and those are the audios we have access to. Therefore,
to find a global label over all the chunks, we had to adopt the
decision strategies in Subsection 3.4. We also have transcrip-
tions of the full text, but without correspondence to each of the
chunks of the same narrative. In train, the distribution of the
labels of Valence is {L:33, M:30, H:24}, whereas for Arousal
it is {L:13, M:44, H:30}, which is why it is subject to upsam-
pling before training the classifier. The metric adopted by the
Challenge is the Unweighted Average Recall (UAR).

The best results of the official baseline for the develop-
ment set are UAR = 42.0% for Arousal and UAR = 56.1% for
Valence. These were obtained with Bag-of-Audio-Words [23]
+ SVM and a Linguistic Feature extractor + SVM, respec-
tively [1].

4.2. Audio modality results

Table 1 reports Arousal and Valence UAR classification results
obtained with each acoustic feature set for the corresponding
best SVM complexity configuration. The Table also includes
results for the two approaches considered for attributing a single
label to a sequence of items: majority voting (MV) and feature
averaging (AVG).

Table 1: Best UAR [%] in development of each individual
acoustic feature set for the majority voting (MV) and feature
averaging (AVG) approaches.

Arousal Valence

MV AVG MV AVG
ComParE (CP) 39.1 42.7 45.7 43.4
eGeMAPS (eG) 42.5 44.3 36.0 40.5
on-line (oXv) Xv 44.7 39.3 47.5 48.8
normalized (nXv) Xv 35.8 33.3 40 43.5

Table 2 shows the results obtained for the different combi-
nations of hand-crafted and embedding acoustic feature sets.

Table 2: Best UAR [%] in development of combined hand-
crafted and embedding acoustic feature sets for the majority
voting (MV) and feature averaging (AVG) approaches.

Arousal Valence
MV AVG MV AVG

CP + oXv 41.0 43.1 48.3 50.0
eG + oXv 44.7 44.1 49.8 48.4
CP + nXv 39.3 46.1 51.1 49.5
eG + nXv 41.8 40.5 46.7 43.8
CP + sXv 41.7 44.2 48.0 48.7
eG + sXv 40.1 37.0 46.9 46.4

Amongst each acoustic feature set, Table 1, on-line x-
vectors provided the best results. As for the remaining acoustic
feature sets, it is hard to find general tendencies on which per-
form best. As well, no voting approach seems to be better. For
the combination of acoustic feature sets Table 2, the best re-
sults for Arousal and Valence are obtained for the ComParE set
and normalized x-vectors, with feature averaging in one case,
and majority voting in the other, although no feature combina-
tion nor averaging approach seems to be better than another. It
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is noticeable, though, that the combination of different feature
vectors steadily improves the performance.

Furthermore, although the number of features in each set
may vary considerably, it seems to have no direct impact on the
classification.

4.3. Text modality results

To keep the size of the input to BERT within its natural lim-
its, we have extracted the embeddings for sentence-like units of
each text. The embedding corresponding to the narrative is the
average embedding over all the embeddings. The best results
of the SVM classification of these embeddings on the develop-
ment set are UAR = 40.6% for Arousal and UAR = 58.8% for
Valence.

Whereas for Arousal the UAR is still under the baseline, for
Valence it is already above. This matches the principle that text
has a higher contribution to Valence than acoustics.

Linguistic modelling of the baseline was initially obtained
from a German BERT model. The best result for Arousal –
40.6% – is the same as ours, but the best result for Valence –
56.1% – is slightly under what we were able to achieve with
the multilingual model. Although a direct comparison cannot
be made, as the pipelines are different, we can presume that a
multilingual model was a good choice, for this case.

4.4. Early and late fusion results

To combine acoustic and text systems at the feature level (early
fusion), we take the average audio features over all chunks and
concatenate them with the corresponding text features for the
same narrative. Results are shown in the left-hand side of Ta-
ble 3. To combine acoustic and text systems after classifica-
tion (late fusion), we take the classification confidence score of
the individual systems (in particular, the ones using the average
combination of Tables 1 and 2 and the text embedding system
of section 4.3) and, for each narrative, we chose the label either
from text or acoustic classification with the highest confidence
score. The results are on the right-hand side of Table 3.

Regarding early fusion, differences among the acoustic fea-
ture sets for each dimension of emotion are no longer as notice-
able as they were in Table 1. We notice that results are lever-
aged for both dimensions, but more noticeably for Valence. For
Arousal, the combination with text embeddings allowed for five
combinations surpassing the baseline for the development set,
against three for Valence. Regarding late fusion, when com-
pared to the acoustic-only systems in Table 2, we see that al-
though the contribution of text for Arousal is not clear, as there
is only one situation where it improves, results tend to be bet-
ter due to the combination with text modality. For Valence, not
only it improves the classification in all cases, but it also seems
to equalize them. Early fusion does not lead to this homogene-
ity, but on the other hand, it allows for performance spikes in
some specific configurations, achieving the best results reported
in this work.

Overall, the best results for Arousal (48.8%) and Valence
(61.0%) are obtained with early fusion of the ComParE feature
set and x-vectors – on-line and normalized, respectively. These
results correspond to 16.2% and 8.7% relative UAR improve-
ment with respect to the official baseline in the development
set. Table 4 shows the confusion matrix of this best system.
There, we notice that the system for Arousal classification tends
to misclassify the Low and High samples, mostly as Medium.
For Valence, the confusion matrix is more balanced. Low sam-
ples are the ones in which the system performs best. In both

Table 3: Best UAR [%] for Early Fusion (left) and Late Fusion
(right) of acoustic and text features in development.

Early Fusion Late fusion

Arousal Valence Arousal Valence

(CP) + TE 46.4 52.8 40.6 48.2
(eG) + TE 45.1 53.3 44.0 54.1
(CP + oXv) + TE 48.8 56.9 43.0 53.8
(eG + oXv) + TE 36.9 57.5 35.7 54.6
(CP + nXv) + TE 43.9 61.0 45.4 49.1
(eG + nXv) + TE 40.5 43.9 40.7 56.4
(CP + sXv) + TE 48.1 51.6 43.7 53.6
(eG + sXv) + TE 36.9 52.1 36.5 58.0

cases, though, there is a bias towards low values, in the sense
that misclassifications tend to happen more in attributing labels
of lower values than the real one than the opposite.

Table 4: Confusion matrices of the best systems for Arousal and
Valence. Entry in row i and column j indicates the number of
samples with true label being i class and predicted label being
j class.

Arousal Valence

L M H L M H

L 5 12 1 23 9 8
M 6 33 11 6 13 9
H 1 8 10 1 3 15

5. Discussion and Conclusions
Emotions can be interpreted as combinations of Arousal and
Valence on different levels of granularity. Each of these dimen-
sions may be characterized by different types of features. In
this work, we have explored how audio and text embeddings
can contribute to the classification of different dimensions of
emotions. In particular, we experimented several combinations
of traditional paralinguistic-tailored features with model-based
features, as well as different early and late fusion schemes for
the two modalities. The speech embeddings were x-vectors ex-
tracted from a network trained for speakers of a wide range of
backgrounds, accents of English and ages, and the linguistic
model for BERT was trained on 104 languages. We have seen
that these embedding features, which have not even been trained
for emotion recognition, can attain – isolated – results compa-
rable or even better to those obtained with traditional features,
showing the success of feature embeddings for transfer learn-
ing.

To what extent context is important for this task, and partic-
ularly fine-grained to this specific population, it is not yet well
known. However, it is clear that context/embeddings with dif-
ferent modalities have a role to play in emotion recognition, not
restricted to negative emotions of the elderly (usually, the spec-
trum analysed in the literature).

For future work, it would be interesting to assess how this
approach would perform for data of non-elderly and to explore
the particularities of this specific population.
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