
The INTERSPEECH 2020 Computational Paralinguistics Challenge:
Elderly Emotion, Breathing & Masks

Björn W. Schuller1,2,3, Anton Batliner2,4, Christian Bergler4, Eva-Maria Messner5, Antonia Hamilton6,
Shahin Amiriparian2,3, Alice Baird2, Georgios Rizos1, Maximilian Schmitt2, Lukas Stappen2,

Harald Baumeister5, Alexis Deighton MacIntyre6, Simone Hantke3

schuller@IEEE.org

Abstract
The INTERSPEECH 2020 Computational Paralinguistics Chal-
lenge addresses three different problems for the first time in a
research competition under well-defined conditions: In the El-
derly Emotion Sub-Challenge, arousal and valence in the speech
of elderly individuals have to be modelled as a 3-class problem;
in the Breathing Sub-Challenge, breathing has to be assessed as a
regression problem; and in the Mask Sub-Challenge, speech with-
out and with a surgical mask has to be told apart. We describe
the Sub-Challenges, baseline feature extraction, and classifiers
based on the ‘usual’ COMPARE and BoAW features as well as
deep unsupervised representation learning using the AUDEEP
toolkit, and deep feature extraction from pre-trained CNNs using
the DEEP SPECTRUM toolkit; in addition, we partially add deep
end-to-end sequential modelling, and, for the first time in the
challenge, linguistic analysis.
Index Terms: Computational Paralinguistics, Challenge, El-
derly Emotion, Breathing, Speech under Mask

1. Introduction
In this INTERSPEECH 2020 COMPUTATIONAL PARALIN-
GUISTICS CHALLENGE (COMPARE) – the twelfth since 2009
[1], we address three new problems within the field of Computa-
tional Paralinguistics [2] in a challenge setting: In the Elderly
Emotion Sub-Challenge (ESC), both arousal (A) and valence
(V) in the speech of elderly individuals are modelled as 3-class
problems. In the advent of an ageing population and the asso-
ciated challenges in health care, digital solutions are discussed
and need to be provided to assist the elderly in managing their
health and wellbeing [3]. To date, no public speech data set
of elderly emotion has been released for such scientific pur-
poses. In the Breathing Sub-Challenge (BSC), the task is to
sequentially predict a temporal signal of recorded breath, which
is measured using a piezoelectric respiratory belt worn by the
speaker. Breathing patterns provide medical doctors and speech
therapists vital information about an individual’s respiratory and
speech planning [4], insight into human affective states [5, 6], as
well as cognitive and neurological health [7, 8]. Computational
methods that automatically detect breathing events purely by
analysing recorded speech can greatly facilitate such processes
[9, 10]. Finally, in the Mask Sub-Challenge (MSC), the task is
to tell apart whether a speaker wears a surgical mask or not. Mod-
elling speech when the speaker wears a face mask is important

for forensics and communication between surgeons. [11] report
only a small effect of surgical masks on speech understanding
by human listeners; this is corroborated for automatic speech un-
derstanding in [12]. In [13, 14], different types of masks seemed
not to have a great impact on speaker identification. Based on
these pilot studies, we might expect a not too high performance
when trying to tell apart speech with or without surgical mask.

For all tasks, a target value/class has to be predicted for each
case. Contributors can employ their own features and machine
learning algorithms; standard feature sets and procedures are
provided. Participants have to use the predefined partitions for
each Sub-Challenge. They may report results obtained from
the Train(ing)/Dev(elopment) set – preferably with the supplied
evaluation setups, but have only five trials to upload their results
on the Test set per Sub-Challenge, whose labels are unknown
to them. Each participation must be accompanied by a paper
presenting the results, which undergoes peer-review and has
to be accepted for the conference in order to participate in the
Challenge. The organisers preserve the right to re-evaluate the
findings, but will not participate in the Challenge. As evaluation
measure, we employ: (1) in the ESC and the MSC, Unweighted
Average Recall (UAR) as used since the first Challenge from
2009 [1], especially because it is more adequate for (unbalanced)
multi-class classifications than Weighted Average Recall (i. e.,
accuracy) [2, 15]; (2) in the BSC, Pearson’s Correlation Co-
efficient r [16], because the target variable is interval-scaled.
Ethical approval for the studies has been obtained from the perti-
nent committees. In section 2, we describe the challenge corpora.
Section 3 details baseline experiments, metrics, and baseline
results; concluding remarks are given in section 4.

2. The Three Sub-Challenges
2.1. The Elderly Emotion Sub-Challenge (ESC)

For the ESC, the Ulm State of Mind in Speech-elderly
(USOMS-e) corpus is used. Due to some technical constraints,
we employ a subset of the whole database consisting of 87 sub-
jects (55 f, 32 m, age 60–95 years, mean 71.01 years, std. dev.
9.14 years) and two negative and one positive spontaneous narra-
tives per speaker. A and V [17] were assessed by the speakers
(self-assessment) after each narrative, and post festum by four
experts (expert-assessment) on a scale from 0-10; reference
values are the mean of self-assessment and (the mean of) expert-
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assessments. The questions were for A: “On a scale from zero
(very sleepy) to ten (very excited), how activated do you feel
at this moment?”, and for V: “On a scale of zero (very bad) to
ten (very good), how negative or positive do you feel at this
moment?”. This yields global scores, given for a longer period
of time, where emotions surely fluctuate [18]; more fine-grained
attentional shifts towards own emotions would, however, change
the subject’s perception [19]. The general principle is mood con-
gruency; positive core affect shifts attention to positive material,
negative core affect to negative material, and vice versa [20].
The stereo audio from the video recordings were converted to
mono, 16 kHz, 16 bit. Segments of five sec each were created
from the cleaned recordings in an automatic way, resulting in
7 478 chunks. We provide both manually and automatically1

created orthographic transcriptions on narrative-level; the former
is used for the linguistic baseline. To create the three-class clas-
sification task, the raw values for the scores have been mapped
onto (i) (L)ow: 0-6, (ii) (M)edium: 7-8, and (iii) (H)igh: 9-10.

2.2. The Breathing Sub-Challenge (BSC)

For the BSC, we employ a subset of the UCL Speech Breath
Monitoring (UCL-SBM) database. All recordings took place
in a quiet office space. Here, we use only spontaneous speech
recordings that pose a greater challenge in terms of respiratory
planning [4], and recordings from one (MLT1132, ADInstru-
ments, Castle Hill, Australia) of the two piezoelectric respiratory
belts worn by the subjects. The belt is positioned approximately
four centimetres below the collarbone to record chest breathing,
and produces a linear voltage reading in response to changes in
thoracic circumference associated with respiration. Speech was
recorded via an AKG model C555L head-mounted condenser
microphone at a distance of approximately three centimetres
from the mouth. All signals were sampled at 40 kHz; speech
was downsampled to 16 kHz and breath belts to 25 Hz in post-
processing. The breath signal was further normalised by dividing
each value by the maximum recorded value across the dataset.
All 49 speakers (29 f, 20 m) reported English as a primary lan-
guage, but ranged in regional accents (e. g., American, Irish,
etc.), as well as sociolect; ages range from 18 to approximately
55 years old (mean age 24 years; std. dev. ˜10 years). From each
speaker, we recorded some five minutes of spontaneous speech;
they were invited to answer a series of questions about their
experience of visiting or living in the city of London; however,
it was up to their discretion to choose another topic to speak
about. The recordings were edited at a common duration of four
minutes for conformity, as well as to avoid background noise
or the experimenter’s instructions. Each breath belt signal is a
sequence of 6 000 continuous values.

2.3. The Mask Sub-Challenge (MSC)

In the MSC, the Mask Augsburg Speech Corpus (MASC) is
used. It comprises recordings of 32 German native speakers,
wearing the surgical mask from Lohmann and Rauscher, type
Sentinex Lite (16 f, 16 m, age from 20 to 41 years, mean age
25.6 years, std. dev. 4.5 years); the recordings took place in a
sound-proof audio studio, using the large diaphragm condenser
microphone C4500 BC from AKG; audio was sampled at a rate
of 48 kHz with 24 bit, downsampled and converted to 16 kHz
and mono/16 bit; the total duration is 10 h 9 min 14 sec. The
participants performed different tasks without a mask and while
wearing the mask: They answered some questions, read words

1https://cloud.google.com/speech-to-text

Table 1: Databases: Number of instances per class in the
Train/Dev/Test splits: USOMS-e: # of narratives, per L/M/H for
A/V; UCL-SBM: # of speakers; MASC: # of chunks. Test split
distributions were blinded during the ongoing challenge.

# Train Dev Test Σ
Ulm State-of-Mind in Speech-elderly (USoMS-e) corpus
L 13/33 18/40 9/35 40/108
M 44/30 50/28 52/29 146/87
H 30/24 19/19 26/23 75/66
Σ 87/87 87/87 87/87 261/261
UCL Speech Breath Monitoring (UCL-SBM) corpus
Σ 17 16 16 49
Mask Augsburg Speech Corpus (MASC)
no-mask 5 353 6 666 5 553 17 572
mask 5 542 7 981 5 459 18 982
Σ 10 895 14 647 11 012 36 554

known for their usage in medical operation rooms, drew a picture
and talked about it, and described pictures, e. g., sport activi-
ties, families, kids, food, or locations. The task is to recognise
whether the speaker was recorded while wearing a mask or not.
The recordings were segmented into chunks of 1 sec duration
without overlap.

3. Experiments and Results
For all corpora, the segmented audio was converted to single-
channel 16 kHz, 16 bits PCM format. Table 1 shows the num-
ber of cases for Train, Dev, and Test for the three databases;
partitions were gender-balanced. For the ESC, in the acoustic
analysis, chunks of five sec were processed for A and for V;
later, the majority votings for A and for V are averaged for each
narrative; this constitutes the baseline. In the linguistic analysis,
the whole narrative was processed for A and for V, and accord-
ingly, the mean of these two measures serves as baseline. For the
regression task in the BSC, the number of speakers is given, and
for the classification task in the MSC, we display the number of
items (chunks of one sec).

3.1. Approaches

COMPARE Acoustic Feature Set: The official baseline fea-
ture set is the same as has been used in the seven previous
editions of the COMPARE challenges, starting from 2013 [21]. It
contains 6 373 static features resulting from the computation of
functionals (statistics) over low-level descriptor (LLD) contours
[22, 21]. A full description of the feature set can be found in
[23]. For the BSC, preliminary experiments included frame-
level extraction (40 msec hop size) of the 65 COMPARE feature
set low-level descriptors (LLDs), as well as their first derivation
(delta), resulting in a 130 dimensional LLD feature set. However,
due to the Support Vector Machine (SVM) paradigm which is
used for the other COMPARE features baselines, results in this
case were at best .221 and .389 r for Dev and Test, respectively.
Through further evaluation, a one sec hop size for COMPARE
functionals with cubic spline interpolation to estimate the data-
points at a rate of 40 ms during training found meaningful im-
provements and is therefore chosen for the COMPARE features
baseline. We assume that the reason for performance improve-
ment by the latter approach is that the temporal speech patterns
that are informative towards the prediction of the breath signal
are in general longer than the 25 Hz upper belt signal frequency.
In addition to these features provided in the baseline package,
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participants can also extract the according LLDs from the openS-
MILE configuration. Combined with a sequence classification
utilising, e. g., Long Short-Term Memory (LSTM) Recurrent
Neural Networks (RNNs), similar as in following sections, this
may show substantial improvements.
Bag-of-Audio-Words (BoAWs): These have been applied suc-
cessfully for, e. g., acoustic event detection [24] and speech-
based emotion recognition [25]. Audio chunks are represented
as histograms of acoustic LLDs, after quantisation based on a
codebook. One codebook is learnt for the 65 LLDs from the
COMPARE feature set, and another one for the 65 deltas of
these LLDs. In Table 2, results are given for different code-
book sizes. Codebook generation is done by random sampling
from the LLDs/deltas in the training data. Each LLD/delta is
assigned to the 10 audio words from the codebooks with the
lowest Euclidean distance. Both BoAW representations, one
from the LLDs and one from their deltas, are concatenated.
Finally, a logarithmic term frequency weighting is applied to
compress the numeric range of the histograms. LLDs are ex-
tracted with the OPENSMILE toolkit, BoAW are computed using
OPENXBOW [26]. As with the COMPARE acoustic features,
for the BSC, we extract BoAWs with a frame size of one sec,
and apply interpolation at a rate of 40 ms during training.
DEEP SPECTRUM: The feature extraction DEEP SPECTRUM
toolkit2 is applied to obtain first deep representations from the in-
put audio data utilising pre-trained convolutional neural networks
(CNNs) [27]. DEEP SPECTRUM features have been shown to
be effective, e. g., for speech processing [28] and sentiment
analysis [29]. First, audio signals are transformed into mel-
spectrogram plots using a Hanning window of width 32 ms and
an overlap of 16 ms. From these, 128 Mel frequency bands
are computed. The generated spectrograms are then forwarded
through ResNet50 [30], a pre-trained CNN, and the activations
of the ‘avg_pool’ layer of the network are extracted, resulting in
a 2 048 dimensional DEEP SPECTRUM feature set.
AUDEEP: Another feature set is obtained through unsupervised
representation learning with recurrent sequence to sequence au-
toencoders, using the AUDEEP toolkit3 [31, 32]. These, in partic-
ular, explicitly model the inherently sequential nature of audio
with RNNs within the encoder and decoder networks [31, 32]. In
the AUDEEP approach, Mel-scale spectrograms are first extracted
from the raw waveforms in a data set. In order to eliminate some
background noise, power levels are clipped below four different
given thresholds in these spectrograms, which results in four sep-
arate sets of spectrograms per data set. Subsequently, a distinct
recurrent sequence to sequence autoencoder is trained on each of
these sets of spectrograms in an unsupervised way, i. e., without
any label information. The learnt representations of a spectro-
gram are then extracted as feature vectors for the corresponding
instance. Finally, these feature vectors are concatenated to obtain
the final feature vector. For the results shown in Table 2, the
autoencoders’ hyperparameters were not optimised.
Linguistic Modelling: It is well known that V cannot be opti-
mally modelled by acoustic features only; both semantic denota-
tions of lexemes (e. g., negations) and connotations of words and
phrases are important additional information [33]. To this aim,
we developed a lightweight LinguistIc Feature Extractor (LIFE)
pipeline to extract and train linguistic features for USOMS-e4.
Transformer language embeddings, such as BERT [34], recently
showed tremendous success over a wide range of Natural Lan-

2https://github.com/DeepSpectrum/DeepSpectrum
3https://github.com/auDeep/auDeep
4https://github.com/lstappen/USOMS-e_LiFE

Table 2: Results for the three Sub-Challenges. The official base-
lines for Test are highlighted (bold and greyscale); there are
no official baselines for Dev. C: Complexity parameter of the
SVM/SVR, optimised for all from 10−5 to 1. N : Codebook
size for Bag-of-Audio-Words (BoAW) splitting the input into two
codebooks (COMPARE-LLDs/ COMPARE-LLD-deltas) of the
same given size, with 10 assignments per frame. ResNet50:
pre-trained CNN used for extraction of DEEP SPECTRUM fea-
tures. X: Threshold power levels for S2SAE under which was
clipped. LIFE: Lingustic feature extraction pipeline and SVM.
End2End with hidden units Nh. UAR: Unweighted Average
Recall. r: Pearson’s correlation coefficient. E: Elderly, A/V
(Arousal/Valence as baseline); B: Breathing; M: Mask.

E B M
UAR [%] r UAR [%]

Dev (A/V) Test (A/V) Dev Test Dev Test
C OPENSMILE: COMPARE functionals+SVM
10−5 39.1/33.3 47.9/33.3 .244 .442 56.8 59.8
10−4 38.7/36.4 43.5/35.1 .234 .435 60.3 67.7
10−3 34.1/40.4 42.4/41.7 .175 .333 62.3 67.8
10−2 26.4/45.7 33.8/39.0 .081 .212 62.6 66.9
N OPENXBOW: COMPARE BoAW+SVM
125 42.0/38.9 40.6/37.7 .185 .357 59.8 58.7
250 40.5/33.3 49.1/31.5 .201 .349 61.5 62.7
500 41.0/38.9 46.6/31.7 .209 .367 63.1 65.0
1000 39.0/38.7 42.2/32.4 .226 .366 63.6 66.1
2000 39.7/40.6 42.2/33.8 .215 .355 64.2 67.7
Network DEEPSPECTRUM+SVM
ResNet50 35.0/31.6 50.4/40.3 – – 63.4 70.8
X [dB] AUDEEP: S2SAE+SVM
-30 36.2/35.4 43.8/32.4 – – 60.1 57.4
-45 34.9/36.7 44.3/33.8 – – 61.3 60.3
-60 41.6/35.1 40.7/32.6 – – 61.9 61.6
-75 40.4/32.7 42.9/33.4 – – 61.6 62.2
Fused 36.3/29.2 43.5/32.0 – – 64.4 66.6
Block LIFE: Transformer+SVM
GMax 39.6/54.2 37.9/41.3 – – – –
BLAtt 40.6/49.2 44.0/49.0 – – – –
BLAtt+POS 33.3/51.9 34.3/44.5 – – – –
Fused 34.1/56.1 34.3/44.5 – – – –
Nh RNN End2End: CNN+LSTM RNN
128 – – .498 .727 – –
256 – – .507 .731 – –

Fusion of Best
– 47.9/39.8 – .621 – 71.8

guage Processing tasks. At first, our pipeline utilises a frozen
German BERT model to extract a 768-dimensional context em-
bedding vector for each word of a story. The sequence of en-
coded words is then fed into a feature compression block to
encode a single feature vector for the entire story. The pipeline
provides two ways to do this, either Global Maximum pooling
(GMax) or bidirectional LSTM RNNs with an attention mod-
ule (BLAtt), followed by two 512 dimensional Rectified Linear
Unit (ReLU) and sigmoid feedforward layers. In addition, the
pipeline provides the option of a German Part-Of-Speech (POS)
tagging which can be used to train a POS embedding supported
by an auxiliary loss. The output of this last layer is used as
feature input for the reproducible SVM evaluation.
End-to-End Deep Sequence Modelling: Our End2End base-
line5 utilises a CNN to extract high-level, shift-invariant features
from the raw time wave representation, and a subsequent RNN
with LSTM cells which performs the final prediction. The for-
mer consists of three stacked one-dimensional CNN layers and

5https://github.com/glam-imperial/
ComParE2020-Breathing-End2End
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Figure 1: Confusion matrices for E, A, and V, left; and M, right; overall number of instances per task given in Table 1. Middle:
exemplary reference breath contour for B in green, predicted contour in mangenta; above with COMPARE; middle with End2End, worse
prediction; bottom with End2End, better prediction. For E and M, the individual approach/hyperparameters performing on Dev for
the best Test result (without fusion) were chosen: for E, A DEEP SPECTRUM+SVM, for E, V LIFE: Transformer+SVM, BLAtt; for M
DEEP SPECTRUM. In the cells, absolute number of cases is given, and percent of ‘classified as’ of the class displayed in the respective
row; percentage also indicated by colour-scale: the darker, the higher.

the latter of two stacked LSTM-RNN layers. The number of
filters and widths of the convolutional layers are 64-128-256 and
8-6-6, respectively, and each one is followed by a max pooling
layer that undersamples at a stride of 10-8-8. The hidden units
of the RNN layers are equal to Nh. This model provides us with
a sequence of hidden states, each of which is passed through a
linear layer to provide the breath belt signal prediction. We flat-
tened the true and predicted signals to calculate r for the training
loss. We use a learning rate of 0.002 for the Adam optimiser,
and train for 100 epochs. The model parameters of the best Dev
performance are used to evaluate on test. Train batch size is 10,
and sequence length 500. For Dev and Test, we use the original
sequences of length equal to 6 000 and calculate r for the entire
partitions. This architecture has been successful in the task of
sequential emotion recognition [35, 36].

3.2. Challenge Baselines and Interpretation

For the sake of transparency and reproducibility of the baseline
computation, in line with previous years, we use an open-source
implementation of SVMs or Support Vector Regression (SVR)
with linear kernels. The provided scripts employ the SCIKIT-
LEARN toolkit with its classes LINEARSVC and LINEARSVR,
respectively, for the classification based on functionals, BoAW,
AUDEEP, and DEEP SPECTRUM features. All feature represen-
tations were scaled to zero mean and unit standard deviation
(MINMAXSCALER of SCIKIT-LEARN), using the parameters
from the respective training set (when Train and Dev were fused
for the final classifier, the parameters were calculated on this
fusion). The complexity parameter C was always optimised
during the development phase; for E, we obtain the majority
vote after determining the best complexity in Dev. For the acous-
tic approaches in the ESC, we upsampled the minority classes
by a natural factor to balance the three classes in Train and
Dev. Each Sub-Challenge package includes scripts that allow
participants to reproduce the baselines and perform the testing
in a reproducible and automatic way (including pre-processing,
model training, model evaluation on Dev, and scoring by the
competition and further measures). This year, we provide the six
approaches outlined above. The same way as in the last three
years, we chose the highest results on Test for defining the base-
lines, irrespective of the corresponding results on Dev, in order
to prevent participants from surpassing the official baseline by
simply repeating or slightly modifying other constellations that
can be found in Table 2. A fusion of the best five (E) or four (M)

configurations (each different approach with its best parameters)
with Majority Voting is given in the last row; in the case of B, a
mean calculation of the best three configurations is given due to
the regression nature of the task. As can be seen in Table 2, for E,
the baseline is UAR = 49.7 % as mean over A, UAR = 50.4 %
(DEEP SPECTRUM), and V, UAR = 49.0 % (BLAtt); for B, it
is Pearson’s r = .731 (End2End); for M, it is UAR = 71.8 %
(fusion of best). Figure 1, left, displays the confusion matrices
for Dev corresponding to the best result on Test, for E (A and V).
It is reassuring that ‘bad’ confusions, i. e., Low with High and
vice versa, are not that frequent. As expected, V can be modelled
better with linguistics than A and vice versa. In the middle, for
B, we display an identical exemplary reference contour for B in
green, and predicted contour in magenta. It is obvious that the
coarse quantisation to 1 Hz and subsequent feature interpolation
do not yield optimal results, cf. Table 2; moreover, END2END
is by design a sequential approach that considers the temporal
proximity of samples, due to the usage of RNNs. To the right,
we find the confusion matrix for M. For such a 2-class problem,
it is difficult to tell whether the fact that mask is better predicted
than without mask (clear) can be interpreted or it is simply owed
to the approach.

4. Concluding Remarks
This year’s challenge is new by three new tasks (elderly emo-
tion, breathing, and speech with/without a mask), all of them
highly relevant for applications. Besides the by now ‘classic’
approaches COMPARE and Bag-of-Audio-Words (BoAWs),
we further featured sequence-to-sequence autoencoder-based
audio features by the AUDEEP toolkit, DEEP SPECTRUM,
a LinguistIc Feature Extractor (LIFE Transformer) as well
as End2End Deep Sequence Modelling. For all computation
steps, scripts are provided that can, but need not be used by the
participants. We expect participants to obtain better performance
measures by employing novel (combinations of) procedures and
features including such tailored to the particular tasks.
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