
PoCoNet: Better Speech Enhancement with Frequency-Positional
Embeddings, Semi-Supervised Conversational Data, and Biased Loss

Abstract

Neural network applications generally benefit from larger-sized
models, but for current speech enhancement models, larger
scale networks often suffer from decreased robustness to the
variety of real-world use cases beyond what is encountered in
training data. We introduce several innovations that lead to bet-
ter large neural networks for speech enhancement. The novel
PoCoNet architecture is a convolutional neural network that,
with the use of frequency-positional embeddings, is able to
more efficiently build frequency-dependent features in the early
layers. A semi-supervised method helps increase the amount
of conversational training data by pre-enhancing noisy datasets,
improving performance on real recordings. A new loss function
biased towards preserving speech quality helps the optimiza-
tion better match human perceptual opinions on speech quality.
Ablation experiments and objective and human opinion metrics
show the benefits of the proposed improvements.

1. Introduction
Neural network based approaches have greatly improved the

output quality of speech enhancement systems [1, 2, 3, 4, 5].
These networks are trained, typically, in a supervised setting,
with synthetic mixtures of clean speech and known noise clips,
sometimes with synthetic reverberation added. Usually, the
model is used to estimate a magnitude gain for each bin in the
time-frequency domain representation of the noisy and/or rever-
berant mixture signal. Recent phase-aware models use a com-
plex ratio mask instead of magnitude gain [6, 7], while other
approaches work directly in the waveform domain [8, 9, 10].

The speech enhancement problem has multiple challenges
associated with it. First, the model needs to be robust to the
multitude of different speech, recording, and noise conditions
present in real-world usage. Second, clean speech data for train-
ing is limited in the public domain, with the biggest datasets
coming from read material. Third, the task becomes increas-
ingly difficult in low signal-to-noise ratio (SNR) cases, which
can be helped by training larger models, which in turn makes
the model more prone to fitting to the biases of the available
dataset, decreasing robustness to other real-world conditions,
making both of the first two challenges more pronounced. And
fourth, the mismatch between human perception of sound qual-
ity and standard loss functions and metrics [11] can make well-
optimized models perform worse in human evaluation.

We propose several architectural, data preparation, aug-
mentation and loss-function innovations that help meet the

Audio samples are available at https://www.
amazon.science/interspeech-2020-deep-noise-
suppression-audio-samples

above stated challenges for large neural networks for speech
enhancement.

On convolutional architectures, standard implementations
in the time-frequency domain rely on 1D or 2D convnets. In
the typical 1D architecture (e.g. ConvTASNet [12]), the kernels
move in the time-direction, and are fully connected in the fre-
quency direction. These tend to have very large weight matrices
in the early layers, where the architecture could benefit from a
more hierarchical development of features. On the other hand,
in standard 2D U-Net models where kernels move in both the
time and frequency directions [13], early layer activations are
blind to what frequency they operate in – even in the case when
padding is used, these early features’ receptive fields have not
yet reached the edges of the time-frequency image. Our pro-
posed architecture has the advantages of both options, it is a
2D U-Net (with DenseNet blocks and self-attention) with small
kernels, and can therefore develop features hierarchically, but
can also take into account frequency information in early layers
with the inclusion of frequency-positional embeddings.

On the data front, we scale up the amount of clean conver-
sational data available for training by using a semi-supervised
approach. The clean portion of the LibriSpeech dataset, our
starting point, contains data only from audio books, which is not
conversational. The larger VoxCeleb dataset [14], on the other
hand, is from television broadcasts, and contains background
music and effects, some of the data is also highly reverberant.
We use LibriSpeech-trained speech enhancement models to iso-
late the clean speech in VoxCeleb2 and eliminate reverberant
clips, and show that adding this processed clean speech dataset
to the training data improves the robustness of the model to con-
ditions not well-represented in LibriSpeech. To make the most
effective use of the data, we also use an extensive data augmen-
tation stack that also helps address specific failure modes.

We also apply synthetic reverberation in the dataset using
a library of recorded and synthetically generated room impulse
responses. We train separate models to target the task with and
without partial dereverberation. For non-dereverberating mod-
els, reverberation is added during training to the clean speech
data as an augmentation before mixing. For training partially
dereverberating models, we add, to the clean speech labels, a
faster decaying version of the reverberation as was done in [15].

We use L1 losses across the board to help deal with dataset
noise. We use a linear combination of two losses. The first is a
new L1-loss on magnitudes which is biased to penalize under-
estimation of speech time-frequency bin magnitudes, as well as
weighted towards high-frequencies, which makes the output of
the trained model better preserve speech quality and avoid muf-
fling. The second, is an L1 loss in the audio waveform domain,
which is backpropagated though the STFT layer and complex
multiplication to the estimated complex ratio mask values in
the time-frequency domain.
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To measure the performance of our model, we rely on
Mean Opinion Score (MOS) subjective testing crowd-sourced
on Amazon Mechanical Turk, using model outputs on the Deep
Noise Suppression (DNS) challenge [16] pre-competition test
set, as well as on standard numerical metrics on the synthetic
portion of the same test set. An ablation study shows the added
improvement to human MOS and numerical metrics from each
proposed component discussed above.

2. Method
Let s be the clean speech audio signal and x = s ∗h+n be the
same signal with added noise n and reverberated version s ∗ h,
which is convolved with a room impulse response h, and let y
be the denoised and/or dereverberated target signal. The neural
model N takes as input the STFT of the reverberant and noisy
example s ∗ h + n and estimates the complex ratio mask that
would give the target signal estimate as:

ŷ = ISTFT(N (STFT(x)) · STFT (x)).

2.1. Architecture

For the neural model N , we start with a fully-convolutional
2D U-Net architecture with self-attention layers and 4-layer
DenseNet blocks at each level, similar to [17]. We take the
convolutions to be causal in the time direction, but not in the
frequency direction, meaning that padding is applied symmetri-
cally in the frequency direction as is usual in 2D convnets, but
applied asymmetrically in the time direction in the sense that it
is only used at the edge of each layer corresponding to the early
part in time. This helps preserve the output quality at the late-
portion of the output which is used in low-latency application as
padding tends to hurt quality near edges and borders. Note that
look-ahead is provided by the average-pooling layers, which are
used instead of max-pooling. Figure 1 shows the overall archi-
tecture, while Figure 2 shows details of the DenseNet and atten-
tion blocks.

The self-attention blocks we use are the same as the ones
used in [18, 19] with the exception that the mechanism ag-
gregates information only in the time direction to increase ef-
ficiency during training and inference.

2.1.1. Frequency-Positional Embeddings

For early convolutional layers to be able to do frequency-aware
processing, we concatenate a vector of positional embeddings
to each time-frequency bin at the input layer of the model. The
frequency-positional embedding vector for time-frequency bin
centered at (t, f) depends only on f and is defined as:

ρ(t, f) = (cos(π
f

F
), cos(2π

f

F
), . . . , cos(2k−1π

f
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)),

where F is the frequency bandwidth and k = 10.

2.2. Datasets

For the clean signal s, we combine data from two sources.
First, we take two subsets of the publicly available LibriVox
dataset, totaling approximately 600 hours of speech data: the
LibriSpeech-clean1, [20], as well as the subset of the LibriVox
dataset filtered based on Mean Opinion Scores to form the DNS

1’clean’ clips in LibriSpeech were selected based on WER in ASR
experiments, not directly by audio quality

Challenge dataset [21]. The second source is VoxCeleb2 from
which we use approximately 800 hours of data.

2.2.1. Semi-Supervised Learning with the VoxCeleb2 Dataset

To be able to use this large and varied dataset, we first train two
models on the LibriSpeech dataset described above. The first
model is a speech enhancement model that also does full dere-
verberation that is trained to estimate the reverb-only portion
h ∗ s− s, along with the clean signal s and noise n. This model
uses the same architecture as our proposed network, but we use
fewer filters, and early stopping to avoid overfitting. We use this
model to estimate the direct-to-reverberant ratio (DRR) of each
clip in VoxCeleb2 and filter out clips with DRR less than 30
dB. While this model is better at estimating DRR compared to
more traditional methods, its clean signal estimates contain arti-
facts and are not suitable for training. Instead, we use a second
model with the same architecture, trained to estimate h∗s and n
only. We use this denoise-only model to filter out all clips with
signal-to-noise ratio (SNR) less than 10 dB, and use its clean
speech estimates as training data for subsequent experiments.

2.2.2. Noise data and over-sampling nonstationary noise

For noise data, we filter the AudioSet dataset, selecting clips
with tags from the AudioSet ontology that are sounds that
a speech enhancement system would be expected to remove,
while excluding any clips with tags related to sounds that hu-
mans make.

We found that, even though most AudioSet tags correspond
to non-stationary noise categories, a random 1-second chunk we
use in training will more often than not have no non-stationary
noise. We compute, for each chunk, the energy levels in 50
ms windows, and upsample, during training, chunks that have
a standard-deviation of windowed energy of at least 3 dB. This
increase the prevalence of non-stationary noise during training.

2.3. Augmentations

We use the following augmentation stack. Unless specified oth-
erwise, distributions are uniform in the given number ranges.

• EQ. Random high and low-shelf EQ filters. With cen-
ter frequency chosen uniformly in logarithmic domain
between 40 and 8000 Hz, gain between ±10 dB. Two
random EQ bell-curves per datapoint, symmetric in log
domain, with Q-value between 0.5 and 1.5; frequency
chosen from the same interval as shelf EQ. Randomized
and applied to both speech and noise separately.

• Pitch shifts. Random resampling with ±10% of the
original sample rate.

• Clipping. Random clipping between 0.5 and 1 of the
peak value of the signal, applied 10% of the time.

• Empty buffer simulation. Random deletion of the first
0.5 to 1 of the input signal to simulate partially filled
buffer in low-latency evaluation.

• Level and Silence. We skip datapoints with foreground
RMS less than -38 dBFS (dB relative to full-scale of 1.0)
and normalize each signal to have RMS value of -20
dBFS. We then apply a random volume down between
-30 and 0 dB to the background, normalize the mix to
-20 dBFS RMS, then apply a random amplification be-
tween -25 to 5 dB to everything. We additionally use
silence as the foreground 3% of the time.
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Figure 1: Top two levels of the U-Net architecture shown with frequency-positional embeddings and STFT real and imaginary parts
inputs; and real and imaginary parts of complex ratio mask outputs. We use a 6-level U-Net architecture.
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Figure 2: Details of the DenseNet and attention block. Straight
arrows are convolutions with batch normalization and ReLU
non-linearity, curved arrows are concatenations.

• Band-limiting. To make the model robust to cases
where the input signal is band-limited, we apply a low
pass filter at a frequency between 4 and 7 kHz, 2.5% of
the time to background only, 2.5% of the time to fore-
ground, and 5% of the time to both.

• Reverberation. Used both as an augmentation and for
datapoint creation as described below.

2.3.1. Reverberation

When adding reverberation, we first identify, in each Room
Impulse Response (RIR), the portion corresponding to the di-
rect path, i.e. the ’first tap’, and scale and shift the RIR so
that the first tap is at t = 0 and it has height 1. So we have
x = s ∗ (h0 + h>0) + n where h0 is a single tap at time zero.
We then apply a gain to all taps except the first tap by a value
between -25 and 0 dB. Also, 60% of the time, we add reverber-
ation via the same impulse response to the noise signal as well,
except that there is a separate downward scaling of the non-first
tap. Hence, the model input becomes

x = s ∗ (h0 + αh>0) + (n ∗ (h0 + βh>0)).

We use both real-recorded and synthetic room impulse re-
sponses (RIRs). For real impulse responses, we use the Aachen
Impulse Response dataset [22] consisting of of 214 RIR record-
ings. For synthetic RIRs, we generate a library of 10,000 RIRs,
using the image method [23], with random rectangular rooms
with sizes from 2 to 10 meters with random reflection coeffi-
cients between 0.5 and 1.5.

We restrict to using impulse responses with RT60 < 0.8 s.
We further augment all impulse responses with random re-
sampling, which simulates changing room sizes with the same
materials, and random exponential decays, which approximate
changing uniform absorption levels of the room material.

2.3.2. Partial or No Dereverberation

We experiment with no-dereverberation models, where, during
training, reverberation is used simply as an augmentation, and
the foreground speech label is y = s ∗ h; and with partial-
dereverberation, where the label’s room impulse response has
the first 20ms unaltered, and then made to decay quickly, to
make RT60 < 0.2 s, by multiplying with an exponential decay
function.

2.4. Loss functions

We train the neural model by optimizing, for each target y, the
loss function

L(y, ŷ) = λaudioLaudio(y, ŷ) + λspectralLspectral(Y, Ŷ ),

where the audio loss is the L1 loss,

Laudio(y, ŷ) = |y − ŷ|.
For the spectral loss function Lspectral, let Yt,f = |STFT(y)t,f |
and Ŷt,f = |STFT(ŷ)t,f |, be the STFT bin magnitudes; we set

Lspectral =∑
t,f

w(f)
(
λover1̂Y ≥Y,t,f + λunder1̂Y <Y,t,f

)
|Yt,f − Ŷt,f |.

Here, w is a frequency-weighting function, and 1
̂Y ≥Y,t,f is the

characteristic function with value 1 if Ŷt,f ≥ Yt,f and value
0 otherwise. The variables λover and λunder bias the model for
overestimation or underestimation of the speech magnitude.

2.5. Inference-Time

Discard
x-over

& out
10 ms 30ms

Output as-is

30ms

x-over
buffer

10 ms

Net Input 1 s

New Input Frame 40 msOutput Frame 40 ms

Discard
x-over

& out
10 ms 30ms

Output as-is

30ms

x-over
buffer

10 ms

Net Input 1 s

New Input Frame 40 msOutput Frame 40 ms

Figure 3: The Inference-time mechanism. The convnet is evalu-
ated always on the last second of the input buffer.
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Full Synthetic no Reverb Synthetic with Reverb Real Recordings

Proposed 3.833 4.160 3.613 3.779
without dereverberation 3.807 4.128 3.497 3.802
without positional embeddings 3.789 4.092 3.548 3.758
without background reverbs 3.768 4.119 3.573 3.690
without biased loss 3.766 4.094 3.519 3.726
without semi-supervised data 3.755 4.131 3.620 3.634
without reverb augmentations 3.467 4.133 2.358 3.688

RNNoise [24] 3.464 3.660 3.162 3.517
DNS Challenge Baseline [21] 3.439 3.703 3.120 3.466
Noisy 3.432 3.568 3.183 3.489

95% confidence interval ±0.04 ±0.06 ±0.08 ±0.05

Table 1: Mean Opinion Score evaluation of different Algorithms over the DNS Challenge non-blind test sets.

Synthetic without Reverb Synthetic with Reverb

Methods PESQ CBAK COVL CSIG PESQ CSIG CBAK COVL

RNNoise [24] 1.973 3.463 2.789 2.692 1.777 3.407 2.709 2.569
DNS Challenge Baseline [21] 1.811 2.003 2.235 2.781 1.515 1.937 1.949 2.515
Noisy 1.582 2.533 2.350 3.186 1.821 2.801 2.635 3.499
Proposed 2.745 3.040 3.422 4.080 1.609 2.303 2.223 2.906

without reverb augmentation 2.748 3.043 3.366 3.965 1.293 1.935 1.582 2.017
without semi-supervised data 2.722 3.022 3.343 3.94 1.612 2.302 2.214 2.887
without positional embeddings 2.721 3.012 3.358 3.982 1.638 2.312 2.188 2.807
without partial dereverberation 2.707 3.015 3.286 3.851 2.832 3.209 3.349 3.834
without background reverbs 2.667 2.997 3.296 3.909 1.613 2.301 2.223 2.906
without biased loss 2.457 2.904 3.106 3.749 1.545 2.258 2.070 2.671

Table 2: Objective evaluation of different Algorithms over the DNS Challenge synthetic non-blind test sets. Note that the Synthetic
with Reverb test reference clean labels contain reverberation, results the model that is trained to keep all reverberation has the best
performance on this set.

For low-latency evaluation, we use 40 ms-sized input
frames (i.e. 640 samples at 16kHz) with one-frame look-ahead.
For each input chunk of samples, we run the model on the last
16384 samples in the input buffer. We use cross-over to elimi-
nate artifacts from the frames. Figure 3 illustrates the evaluation
mechanism for two input chunks. Inference takes 0.65 seconds
per second of audio on a V100 GPU.

3. Experiments and Results
For each model, we use 6 down-blocks in the U-Net with the
number of per-layer filters in each being 32, 64, 128, 256, 256,
256, and up-blocks symmetric to the down-blocks. There are
a total of ∼50M parameters. We multiply the foreground and
background losses with weighting coefficients λfg = 2.0, and
λbg = 0.4 for the foreground and background estimation re-
spectively. We take λaudio = 1, and λspectral = 1.5, with (only for
the foreground signal) λover = 2.6 and λunder = 13.3. We have
not used any hyper-parameter tuning techniques, with most pa-
rameters, especially those used for augmentations, set as sensi-
ble defaults and unmodified.

We train each model for 700,000 iterations with total mini-
batch size of 112, using the ADAM optimizer, with learning rate
of 1e-4, halved every 100,000 iterations. Training each model
takes about 4 days on 8 V100 GPUs. Our implementation uses
the MXNet [25] framework.

3.1. Evaluation: Subjective and Objective Metrics

For human opinion tests, we use the methodology of ITU-T
P.808 Subjective Evaluation of Speech Quality with a Crowd-
sourcing Approach [26], on Amazon Mechanical Turk.The
MOS scores are based on 10 listenings each of the model’s out-
puts on the 600 real and synthetic inputs on the INTERSPEECH
2020 DNS Challenge test set [16], which covers varied cases.

For objective metrics, we evaluate wide-band Perceptual
Evaluation of Speech Quality (PESQ) – ITU-T P.862.2 – [27],
and the composite CSIG, CBAK, and COVL scores proposed in
[28] on the 300 synthetic examples in the same test set.

3.2. Results

Tables 1 and 2 show, respectively, objective and subjective met-
ric evaluation results. Note that, removing the semi-supervised
conversational data has a strong effect on performance on real
recordings which tend to have more varied speech styles.

The proposed model took 1st place in the 2020 Deep Noise
Suppression Challenge’s Non-Real-Time Track [16].

Full Synthetic Synthetic Real
without Reverb with Reverb Recs

Noisy 2.95 3.13 2.64 2.83
Proposed 3.52 4.07 3.19 3.40

Table 3: Mean Opinion Score evaluation provided by the DNS
Challenge based on the blind test set. Full results are available
in [16] (team #9).

4. Conclusion
We described new techniques that result in improvements to
speech enhancement with large neural networks. The resulting
PoCoNet speech enhancer is a large U-Net with DenseNet and
self-attention blocks with frequency-positional embeddings,
and is trained with a semi-supervised technique partly on con-
versational data, with an extensive augmentation stack includ-
ing reverberation, and with a loss function that is biased to pre-
serve speech. Evaluation results show the quality improvement
on the overall system due to each component and demonstrate
the effectiveness of the introduced techniques for training large
neural speech enhancers.
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