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Abstract
This paper introduces a dual-signal transformation LSTM net-
work (DTLN) for real-time speech enhancement as part of the
Deep Noise Suppression Challenge (DNS-Challenge). This ap-
proach combines a short-time Fourier transform (STFT) and a
learned analysis and synthesis basis in a stacked-network ap-
proach with less than one million parameters. The model was
trained on 500 h of noisy speech provided by the challenge or-
ganizers. The network is capable of real-time processing (one
frame in, one frame out) and reaches competitive results. Com-
bining these two types of signal transformations enables the
DTLN to robustly extract information from magnitude spectra
and incorporate phase information from the learned feature ba-
sis. The method shows state-of-the-art performance and outper-
forms the DNS-Challenge baseline by 0.24 points absolute in
terms of the mean opinion score (MOS).
Index Terms: noise suppression, deep-learning, real-time,
speech enhancement, deep learning, audio

1. Introduction
The task of noise suppression is an important discipline in field
of speech enhancement; it is for instance of special importance
in work-from-home scenarios where a robust and effective noise
reduction can improve the communication quality and thereby
reduce the cognitive effort of video conferencing. With the up-
rising of deep neural networks, several novel approaches for au-
dio processing methods based on deep models were proposed
[1, 2, 3, 4]. However, these have often been developed for of-
fline processing which does not require real-time capabilities
or the consideration of causality in the processing chain. Such
models process complete sequences and exploit past and future
information of the signals to suppress undesired signal parts.
Classic signal processing algorithms [5, 6] often work on sam-
ple or frame level to provide a low input-output delay. When
designing frame-based algorithms with neural networks, recur-
rent neural networks (RNN) are a common choice. RNNs have
produced convincing results in the field of speech enhancement
[7, 8] and speech separation [9, 10, 11]. Long short term mem-
ory networks (LSTM) [12] represent the state-of-the-art in sep-
aration [13]. The best-performing networks are often build in a
non-causal way by using bidirectional LSTMs where the time
sequence is processed causally as well in the reversed direction.
Bidirectional RNNs always require a full sequence as input and
are therefore principally not suited for real-time frame process-
ing.

The baseline system of the the deep-noise-suppression chal-
lenge (DNS-Challenge) [14] is called NSNet [15] and is also
based on RNN layers and provides real-time capability by cal-
culating one output frame per input frame. Based on the log
power spectrum of the short-time Fourier transform (STFT) of
the noisy time signal, this model predicts a gain or mask which

is applied to a noisy STFT. The predicted speech signal is re-
constructed by using the estimated magnitude and the phase of
the noisy mixture. This approach results in a competitive base-
line system, but it does not incorporate any phase information,
which could be useful for enhanced speech quality. Different
approaches are tackling phase estimation such as estimating the
masks for the real and imaginary part of the STFT instead of
the magnitude [16] or calculating an iterative phase reconstruc-
tion [17]. Research studies such as [11, 18, 19] have shown
promising results for speaker separation tasks with a learned
analysis and synthesis basis that is not decoupling magnitude
and phase information. The representation is calculated by mul-
tiplying time-domain frames with learned basis functions. This
approach was also applied in [20] for separating speech and
noise.

The motivation of the current study is to merge both anal-
ysis and synthesis approaches in one model by using a stacked
dual signal transformation LSTM network (DTLN). Stacked or
cascaded networks were already used in the Deep Clustering
speaker separation approach [9] where an additional enhance-
ment network was added after the separation network. In re-
lated research, cascaded models were used for denoising and
dereverberation [19]. The proposed model presented here cas-
cades two separation cores, the first features an STFT signal
transformation while the second used a learned signal repre-
sentation similar to [18]. This order was chosen to create a ro-
bust magnitude estimation with the first core and enable the sec-
ond core to further enhance the signal with phase information.
This combination is explored for the first time in the context
of noise reduction and could provide beneficial effects due to
the complementarity of classic and learned features transforma-
tions while maintaining a relatively small computational foot-
print. The stacked network in this paper is considerably smaller
as most previously proposed LSTM networks and ensures real-
time capability in terms of computational complexity.

2. Methods
2.1. Signal transformations

In speaker separation, a time-frequency masking approach is of-
ten chosen to separate the speakers’ signals. Noise suppression
is a related source separation problem, but is different in that it
only returns the speech signal and discards the noise. In the time
frequency domain, the separation problem can be formulated as
follows: The microphone signal y is described by

y[n] = xs + xn (1)

where xs and xn are the speech and noise components of time
signals, respectively.

In a noise suppression task, the desired signal is the speech
signal. When the signal y is transformed with an STFT in a
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complex time-frequency representation (TF), the TF represen-
tation of the estimated speech signal X̂s can be predicted as
follows:

X̂s(t, f) = M(t, f) · |Y (t, f)| · ejφy, (2)

where |Y | is the magnitude of the STFT of y. M is a mask
(with masking values ranging from 0 to 1) that is applied to Y ,
and ejφy is the phase of the noisy signal. X̂s can now be trans-
formed back with an inverse STFT to x̂s. In this formulation,
the phase of the noisy signal is used to predict the clean speech
signal.

The second signal transformation of the DTLN was first
proposed by Luo and colleagues [11]. The formulation of the
approach is described in the following: The mixture is split into
overlapping frames yk of length L with frame index k. The
frames are multiplied by U , which has N × L learned basis
functions

wk = ykU (3)

to create the feature representation wk with dimension N × 1
of frame yk. To recover the speech representation dk from wk,
a mask mk can be estimated given by

d̂k = mk · wk, (4)

where d̂k is the feature representation at index k of the estimated
speech signal. d̂k can be transformed back to the time domain
by

x̂k = d̂kV, (5)

where V contains N learned basis functions of length L. x̂k is
the estimated frame at index k. The estimated time signal x̂s is
reconstructed by using an overlap-add procedure.

2.2. Network architecture

The stacked dual-signal transformation LSTM network archi-
tecture introduced in this paper has two separation cores con-
taining two LSTM layers followed by a fully-connected (FC)
layer and a sigmoid activation to create a mask output. The
first separation core uses an STFT analysis and synthesis base.
The mask predicted by the FC layer and the sigmoid activation
is multiplied by the magnitude of the mixture and transformed
back to the time domain using the phase of the input mixture,
but without reconstructing the waveform. The frames coming
from the first network are processed by an 1D-Conv layer to
create the feature representation. The feature representation is
processed by a normalization layer before it is fed to the sec-
ond separation core. The predicted mask of the second core is
multiplied with the unnormalized version of the feature repre-
sentation. The result is used as input to a 1D-Conv layer for
transforming the estimated representation back to the time do-
main. In a last step, the signal is reconstructed with an overlap
and add procedure. The architecture is visualized in Figure 1.

To account for the real-time character of the model, instant
layer normalization (iLN) is used. Instant layer normalization is
similar to standard layer normalization [21] and was introduced
as channel-wise layer normalization in [22]. All frames are nor-
malized individually without accumulating statistics over time
and are scaled with the same learnable parameters. In the cur-
rent work, this normalization scheme is referred to as instant
layer normalization to differentiate from cumulative layer nor-
malisation [18].

Figure 1: Illustration of the proposed network architecture. The
processing chain on the left shows the first separation core us-
ing the STFT signal transformation while the building blocks on
the right represent the second core with learned feature trans-
formations based on 1D-Conv layers.

2.3. Datasets

The training dataset was created from the provided audio data
of the DNS-Challenge. The speech data is part of the Lib-
rispeech corpus [23], and the noise signals originated from the
Audioset corpus [24], Freesound and DEMAND corpus [25].
500 h of data were created by using the provided scripts. The
default SNR range (0 to 40 dB) was changed to -5 to 25 dB
to include negative SNRs and limit the total range. To cover a
more fine-grained SNR distribution, the number of SNR levels
was increased from 5 to 30. All further parameters remained
unchanged. The 500 h dataset was divided into training (400 h)
and cross validation data (100 h), which corresponds to the com-
mon 80:20 % split. All training data was sampled at 16 kHz.

The challenge organizers also provided a test set which
contains four different categories each containing 300 samples.
The categories are synthetic clips without reverb, synthetic clips
with reverb, real recordings collected internally at Microsoft
and real recordings from Audioset. The synthetic data was
taken from the Graz University’s clean speech dataset [26]. The
SNRs of the synthetic data were randomly distributed from 0
to 25 dB SNR. The impulse responses of the reverberant data
were measured in multiple rooms at Microsoft with reverbera-
tion times (RT60) ranging from 300 to 1300 ms. Further, a blind
test set was created by the organizers which is evaluated in an
ITU P-808 [27] setup. The full details of training and test sets
are provided in [14].

To correctly estimate the performance with all objective
measures in a noisy reverberant environment, the reverberant
single speaker and noise test set of the WHAMR corpus [19] at
16 kHz sampling frequency was used. We turned to this dataset
because some objective measures need a properly delayed but
clean reference signal for correct calculation. Since these sig-
nals are not provided in the DNS-Challenge test set, we used
the WHAMR dataset, which has clean non-reverberant speech
files accounting for the delay of the impulse response. The used
WHAMR test set consists of 3000 mixtures. The speech files
are taken from the WSJ0-mix corpus [28] that are often used in
speaker separation. The speech files are convolved with room
impulse responses with the RT60 ranging from 100 to 1000 ms
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that were simulated with Pyroomacoustics [29]. The noise con-
sists of real-life recordings of situations such as coffee shops,
restaurants, bars, office buildings and parks. The SNRs range
from -3 to 6 dB relative to the speech.

2.4. Model configuration and training setup

The DTLN in this paper1 has 128 units in each of its four LSTM
layers. The frame size is 32 ms and the shift 8 ms. The FFT size
is 512 and equal to the frame length. The 1D-Conv Layer to
create the learned feature representation has 256 filters. During
training, 25% of dropout is applied between the LSTM layers.
The Adam optimizer is used with a learning rate of 10e-3 and
and a gradient norm clipping of 3. The learning rate is halved if
the loss on the validation set does not improve for three consec-
utive epochs. Early stopping is applied if loss on the validation
set does not decrease for ten epochs. The model is trained on
a batch size of 32, and each sample has the length of 15 s. The
average time for one training epoch on a Nvidia RTX 2080 TI
is around 21 minutes.

As training objective the scale-sensitive negative SNR [20]
was used. Compared to the Scale Invariant Signal to Noise Ra-
tio (SI-SNR) [11] it should avoid possible level offsets between
input mixture and predicted cleaned speech, which is desirable
in real-time-processing systems. Also, since it operates in time
domain, the phase information can implicitly be considered. In
contrast the Mean Squared Error between the estimated and
clean magnitude STFT of the speech signal as training objec-
tive is not able to use any phase information in the optimization
process.

2.5. Baselines

The first baseline is the noise suppression network (NSNet) pro-
vided by the challenge organizers. NSNet was optimized with
an MSE-based speech distortion weighted loss in frequency do-
main and was trained on a rather small corpus of 84 h of speech
and noise mixtures. It consists of three recurrent layer with 256
gated recurrent units (GRU) [30] and a fully-connected layer
with sigmoid activation for mask prediction. The frame size is
20 ms and the frame shift 10 ms. GRUs are similar to LSTMs
but without a cell state passed over time.

Additionally, our DTLN method is compared to four mod-
els with the same training setup as the proposed model: These
models are explored to quantify the effect of using one feature
representation only in two different topologies (stacked versus
densely-connected LSTMs): The first and the second model
consist of four LSTM layers followed by a fully-connected layer
with a sigmoid activation to predict a mask. The first one (B1)
uses an STFT analysis and synthesis basis, while B2 used a
learned basis of size 256. The third (B3) and the fourth model
(B4) are stacked models similar to the proposed method. Both
separation kernels of B3 are using an STFT base. B4 has a
learned feature base of size 256 for both separation kernels. The
size of the LSTM layers is chosen with the aim of obtaining a
similar size as the DTLN method in terms of the number of pa-
rameters. The configurations are again shown in Table 1.

2.6. Objective and subjective evaluation

For comparison of the DTLN approach and the baselines, we
use three objective measures, i.e., the Perceptual Evaluation of

1A Keras implementation of the DTLN can be found at
https://github.com/breizhn/DTLN

Table 1: Number of parameters and RNN units in each layer
for the proposed DTLN approach as well as for the baseline
systems.

Method # Prams # Units

NSNet (3 Layer, STFT) 1.27 M 256

B1 (4 Layer, STFT) 988 K 166
B2 (4 Layer, learned) 984 K 139
B3 (2x2 Layer, STFT) 988 K 156
B4 (2x2 Layer, learned) 987 K 95

DTLN (2x2 layer, STFT+learned) 987 K 128

Speech Quality (PESQ) [31], the Scale-Invariant Signal to Dis-
tortion Ratio (SI-SDR) [32] and the Short Time Objective Intel-
ligibility measure (STOI) [33].

The subjective evaluation was performed with the a ITU-
T P.808 setup on the Amazon mechanical Turk (AMT) imple-
mented and organized by Microsoft. In total, there were two
evaluation runs, one on the known test data set of the DNS-
Challenge and one on a blind test set provided later on. Each
file was rated by five or ten judges in the first and second run,
respectively.

3. Results
The results of the objective evaluation are shown in Table 2 and
the subjective evaluation in Table 3. The results are described
in the following:
Objective results for the non-reverberant DNS-Challenge
test set: In the non-reverberant condition, all models produce
improvements over the noisy condition. NSNet is outperformed
by the DTLN and all additional baselines. All models trained on
500 h of data are producing similar results. The best results in
terms of PESQ, SI-SDR and STOI were reached by the DTLN
network. The high values obtained with B3 and the DTLN show
the strength of stacked models. Even though B4 is also a stacked
model, it performed considerably worse, which is discussed in
Section 4.
Objective results for the reverberant DNS-Challenge test
set: In this condition, results are not as clear as in the non-
reverberant condition. In terms of PESQ, only B4 shows a slight
improvement over the noisy condition. For the SI-SDR all mod-
els show an improvement, while STOI predicts the highest qual-
ity for the original noisy condition. One issue with the intrusive
or double-ended measures is that they require a reference signal
which is in this case the reverberant clean speech. With this ref-
erence signal a potential dereverberation effect by any speech
enhancement model would result in a decrease of the objective
measures, which presumably is an important factor for these re-
sults.
Objective results on the WHAMR test set: All methods are
showing an improvement over the noisy condition, with the best
scores obtained by the DTLN approach. Similar performance
levels are again reached by B3. The baseline shows just a slight
improvement for all objective measures. It should be mentioned
that the mixtures used in this corpus have a smaller SNR range
around 0 and is therefore a more challenging condition for the
models.
Subjective results on the DNS-Challenge test sets: The sub-
jective results for the known non-reverberant test set are in line
with the objective results. For the reverberant test set, the sub-
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Table 2: Results in terms of PESQ [MOS], SI-SDR [dB] and STOI [%] of the non reverberant test set, the reverberant test set of the
DNS challenge and the reverberant single mix test set of the WHAMR corpus.

DNS test set no reverb DNS test set with reverb WHAMR test set

Method PESQ SI-SDR STOI PESQ SI-SDR STOI PESQ SI-SDR STOI

Noisy 2.45 9.07 91.52 2.75 9.03 86.62 1.83 -2.73 73.00

NSNet 2.70 12.47 90.56 2.47 9.18 82.15 1.91 0.34 73.02
B1 3.00 16.05 94.53 2.75 11.33 85.41 2.20 1.95 79.93
B2 3.00 15.87 94.22 2.74 10.92 85.05 2.18 1.88 79.34
B3 3.03 16.27 94.74 2.70 10.84 84.80 2.23 1.94 80.23
B4 2.96 15.51 93.86 2.76 10.77 84.90 2.20 1.80 78.90

DTLN 3.04 16.34 94.76 2.70 10.53 84.68 2.23 2.12 80.40

jective evaluation shows a clear benefit for DTLN relative to
the noisy condition and the baseline. This effect is not reflected
by the objective measures with exception of the SI-SDR, which
shows some improvement over the baseline and the noisy condi-
tion. The decrease in quality of the NSNet predicted by PESQ
and STOI in the reverberant condition is also observed in the
subjective data. Consistent results are obtained with the real
recordings, both for the conditions known and blind.

Table 3: Subjective ratings in terms of the MOS for the known
and blind test set of the DNS-Challenge. The overall 95% con-
fidence intervals for the known and blind test sets are 0.04 and
0.02, respectively.

Method No With Real
reverb reverb recordings

known blind known blind known blind

Noisy 3.02 3.32 2.44 2.78 3.01 2.97
NSNet 3.14 3.49 2.16 2.64 2.99 3.00
DTLN 3.41 3.58 2.56 2.95 3.14 3.21

Results on execution time: In the context of the DNS-
Challenge, the execution time of one 32 ms frame on a quad-
core I5 6600K CPU was measured. The measurement was per-
formed by either processing a complete sequence or by using
frame-wise processing. Execution times of 0.23 ms and 2.08 ms
were measured for the sequence and frame-wise processing, re-
spectively. The large difference between sequence and frame
processing can be explained by the overhead caused by calling
models for prediction in Keras. Converting the model to Tensor-
flow’s SavedModel format reduces the execution time for frame
by frame processing to 0.65 ms, which is a large improvement.
However, the sequence processing time is nearly three times
lower and demonstrates the potential performance on a CPU.

4. Discussion
In the following, we first discuss differences between baseline
systems, which also has implications for the components of the
DTLN system. The results on the non-reverberant, the rever-
berant and the WHAMR test are showing better results for the
systems B1 and B3 (using STFT features) than for B2 and B4
(that used learned feature representations). One potential rea-
son for the better performance with STFTs is the fixed number
of parameters across networks, and - since the STFT is fixed
and rule-based - it is possible that B1 and B3 exploit the higher

number of parameters available for LSTM layers in comparison
to learned-feature approaches.

Secondly, we assume that STFT features provide a higher
robustness for noisy input since phase information - which is not
useful in high-noise conditions - is discarded. Vice versa, net-
works using learned features have to determine masks implic-
itly for both magnitude and phase information. Another possi-
ble reason for the difference could be the compression which
is performed by the learned feature representation in this work.
The learned feature representation maps 512 audio samples to a
feature representation of size 256. Feature representations with
greater size would have cost even more parameters and it was
empirically found that the reduction of the feature representa-
tion doesn’t have a great impact on the speech quality of the
proposed model.

The results also show that stacking networks using STFT
and learned feature transformation slightly improves overall
baseline systems by using fewer LSTM units than the pure
STFT systems. LSTM units are computational more complex
as fully-connected or 1D-Conv layers, i.e., a reduction of units
is especially desirable for this network type. However, the rela-
tively small difference in terms of objective measures between
DTLN and the related systems (B1-B4) also suggests that a part
of the performance is generated by the large amount of training
data and the training setup.

5. Conclusions
This paper introduced an approach for noise suppression based
on a stacked dual signal transformation LSTM network for real-
time speech enhancement, which was trained on a large-scale
data set. We were able to show an advantage of using two types
of analysis and synthesis bases in a stacked network approach.
The DTLN model works robustly in noisy reverberant environ-
ments. Although we combined a basic training setup with a
straight-forward architecture, we observed absolute improve-
ments of 0.22 in terms of MOS over all subjective evaluations
relative to the noisy conditions.
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