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Abstract
Although attention based end-to-end models have achieved
promising performance in speech recognition, the multi-pass
forward computation in beam-search increases inference time
cost, which limits their practical applications. To address this is-
sue, we propose a non-autoregressive end-to-end speech recog-
nition system called LASO (listen attentively, and spell once).
Because of the non-autoregressive property, LASO predicts a
textual token in the sequence without the dependence on other
tokens. Without beam-search, the one-pass propagation much
reduces inference time cost of LASO. And because the model
is based on the attention based feedforward structure, the com-
putation can be implemented in parallel efficiently. We conduct
experiments on publicly available Chinese dataset AISHELL-
1. LASO achieves a character error rate of 6.4%, which out-
performs the state-of-the-art autoregressive transformer model
(6.7%). The average inference latency is 21 ms, which is 1/50
of the autoregressive transformer model.
Index Terms: speech recognition, sequence-to-sequence, non-
autoregressive, transformer

1. Introduction
Attention based sequence-to-sequence (Seq2Seq) speech recog-
nition systems have achieved promising performance these
years [1, 2, 3]. In these models, an encoder encodes acous-
tic features into high-level representations. And a decoder is a
conditional language model, which predicts the next token in
terms of the previous tokens and the acoustic context. At infer-
ence stage, the decoder finds the most likely token sequence ap-
proximately with beam-search algorithm. This paradigm shows
powerful ability for sequence generation. However, even with
non-recurrent structures (transformers) for parallelization [4, 5],
the autoregressive manner still affects inference speed.

Non-autoregressive Seq2Seq models were proposed for
speeding up the inference of machine translation systems [6,
7, 8, 9]. These models also use an encoder-decoder architec-
ture with attention mechanism. But they can predict all to-
kens in parallel rather than in step-by-step manner. It avoids
multi-pass forward propagation of the decoder in beam-search,
so the inference time cost is much reduced. However, the
performances of these models fall behind the state-of-the-art
autoregressive models. Recently, a transformer based non-
autoregressive speech recognition model was proposed [10].
These models use a mask-predict manner, i.e., several tokens
are replaced by the mask token randomly. And during infer-
ence, the token sequence is generated by filling the masked to-
kens iteratively. This method uses the predicted tokens as the
language context. However, it still requires multi-pass forward
propagation of the decoder to complete all the masked tokens.

We believe that the language semantic1 is contained in the
speech signal implicitly. So, if this semantic can be extracted
well, the token sequence can be generated without relying on
the explicit language modeling, e.g., autoregresive language
models and masked language models. In this paper, we pro-
pose a simple and effective non-autoregressive model called
LASO (Listen Attentively, and Spell Once2). We use the feed-
forward self attention mechanism [4] as basic blocks to build
three modules of LASO: the encoder, the position dependent
summarizer (PDS), and the decoder. The encoder encodes the
acoustic features into high-level representations. The PDS sum-
marizes the semantic at each position from the high-level repre-
sentations and bridges length gap between speech and token se-
quence. The decoder captures token-level semantic and predicts
tokens. We conduct experiments on a publicly available Chi-
nese dataset AISHELL-1 [11]. The proposed LASO achieves
6.4% of character error rates on test set, which is better than
chain model [12] and state-of-the-art autoregressive transformer
models [13]. And compared with the strong baseline autore-
gressive transformer model, the inference of LASO speeds up
by 50×.

2. Background
Speech recognition aims to convert an acoustic feature sequence
to the corresponding textual token (word, sub-word, or phone)
sequence. Given a speech-text pair (x, y), where x denotes the
acoustic feature sequence, and y denotes the token sequence,
the autoregressive Seq2Seq model estimates the conditional
probability P (y|x) by decomposition with the chain rule:

P (y|x) = P (y1|x)
L∏

i=2

P (yi|y<i, x), (1)

where yi denotes the token at step i, y<i denotes the subse-
quence [y1, · · · , yi−1], and L denotes the length of token se-
quence. For an autoregressive model, the prediction of one to-
ken relies on the previously predicted tokens at inference stage.

The non-autoregressive Seq2Seq models assume that each
token is independent from the others:

P (y|x) =
L∏

i=1

P (yi|x). (2)

Because the prediction does not depend on other tokens, the
non-autoregressive Seq2Seq model can predict the token at each
step in parallel.

1In this paper, we refer to the relationship among tokens as language
semantic.

2This name is inspired by [3].
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Figure 1: The architecture of LASO. The encoder first uses a
two-layer CNN to subsample the acoustic feature sequence, and
then uses a stack of attention blocks to obtain high-level repre-
sentations. The position dependent summarizer (PDS) queries
the high-level representations for each position. It bridges
the length gap between the speech sequence and the token se-
quence. The decoder further refines the queried outputs of the
PDS. With a linear transformation, the softmax function gives
the probability distribution on vocabulary at each position. The
tail of the token sequence is filled by “<eos>” token. Dur-
ing inference, LASO directly selects the most likely token, and
removes “<eos>”. The network is trained with cross entropy.

Token relationship is important for sequence generation.
For the CTC based models [14], the token relationship is usu-
ally modeled by an external language model to improve per-
formance. For RNN-Transducers [15], the token relationship
is modeled with a prediction network. And for attention based
encoder-decoder models, the token relationship is modeled with
the decoder autoregressively. The main challenge of the non-
autoregressive Seq2Seq model is: can a model generate token
sequence without the explicit token relationship? We believe
that the token relationship is contained in the speech implicitly.
If we achieve token-level representations from speech, we can
generate the token sequence with the non-autoregressive model.

3. The LASO Model
The basic idea of LASO is that the acoustic feature sequence
contains not only features for pronunciation but also language
semantic, i.e., relationship among tokens. If we extract repre-
sentations from the whole acoustic feature sequence for each
token position, we can do position-wise token prediction. Be-
cause the prediction relies on the acoustic feature sequence
rather than other tokens, it can be implemented in parallel.
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Figure 2: An illustration of an attention block.

Based on this idea, we formulate the position-wise token
prediction as

z = Encode(x),
P (yi|x) = SummarizeAndDecode(z), i = 1, 2, · · · , L

(3)

where z = [z1, · · · , zT ] is the hidden representation sequence
which has the same length with the subsampled acoustic feature
sequence x. To predict the token sequence with length L, z is
summarized and decoded for each position in the sequence. To
generate the token sequence, the most likely token at each posi-
tion is selected. The token “<eos>” is added into the vocabu-
lary as a filler for padding the token sequence to length L. Ide-
ally, the tail of the generated token sequence are all “<eos>”,
and they are easily removed after inference.

The proposed LASO consists of three modules. Each mod-
ule consists of several attention blocks. The encoder encodes
the acoustic feature sequence into high-level representations.
The PDS summarizes the high-level representations to token-
level representations based on the sinusoidal position encod-
ings. The decoder generates the token for each position. The
structure of the model is shown in Fig. 1. We first introduce the
attention block. Then, we introduce each module of the model.

3.1. Attention Block
Attention mechanism has been used to model global depen-
dency in a sequence successfully [4, 16]. Different from re-
current neural networks which represent context step-by-step,
attention mechanism fuses all representations in a sequence by
weighting sum. So, it can be computed in parallel. The dot-
product self-attention is denoted as

Attention(Q,K, V ) = Softmax(
QKT

√
Dk

)V, (4)

where Q ∈ RTq×Dk , K ∈ RTk×Dk , and V ∈ RTk×Dv denote
queries, keys, and values, respectively, Tq is query sequence
length, Tk is key sequence length, and Dv is the dimensional-
ity of the keys. In this paper, Dv equals to Dk, which is set to
Dm representing the model dimensionality. It can be extended
to multi-head version, i.e., the hidden representations are pro-
jected into different subspaces for attention, and are concate-
nated together after attention [4]:

MHA(Q,K, V ) = Concat(h1, · · · , hH)W o,

hi = Attention(QW q
i ,KW

k
i , V W

v
i ), i = 1, · · · , H.

(5)

where H is the number of heads, W o, W q
i , W k

i , and W v
i are

parameter matrices. The dimensionality does not change after
the multi-head attention.
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The position-wise feedforward network is after the atten-
tion:

FFN(x) =W2Activation(W1x+ b1) + b2, (6)

where x is a vector at one position, W1, W2, b1, and b2 are
learnable parameters, Activation is a nonlinear activation func-
tion. In this work, we use gated linear units (GLUs) [17]. Resid-
ual connection [18] and layer normalization [19] are used in the
attention block. We use pre-norm mechanism for stable training
[20]. The attention block is the basic component of LASO.

3.2. Encoder
The first part of the encoder consists of a two layers of convo-
lutional neural network (CNN) for capturing locality of in the
feature sequence. The stride of each CNN layer is 2, so it also
subsamples frame rates and compress the length of the sequence
to 1/4. Following [4], we add sinusoidal position for self atten-
tion mechanism to capture the order. Then, Ne attention blocks
are used for capturing long-term relationship. Keys, queries,
and values are all the inputs, i.e., self attention.

3.3. Position Dependent Summarizer
The main gap between the acoustic feature sequence and the
textual token sequence is the length. Specifically, a textual to-
ken is a highly compressed semantic representation, and mul-
tiple acoustic feature frames correspond one textual token. To
address this, we propose a PDS module to summarize the rep-
resentations from the encoder, and to re-organize them in terms
of the token positions. Basically, it is also composed of a stack
of attention blocks, but the keys and the values are the outputs
of the encoder. The queries of the first block are position encod-
ings with maximum length L, and the queries of the follow-up
blocks are the outputs of the previous block, as shown in Fig. 1.
We use sinusoidal functions [4] to encode positions:

pei,2j = sin(i/100002j/Dm),

pei,2j+1 = cos(i/100002j/Dm),
(7)

where i = 1, · · · , L denotes the i-th position, and 2j and 2j+1
denote element indexes in a vector. The sinusoidal position en-
codings provide position dependent information to query repre-
sentation corresponding to specific position in token sequence
from the encoder outputs. So, the sequence length matches the
token sequence, i.e., the length of the outputs of PDS is L. L
can be set by counting the lengths in the training set.

3.4. Decoder
After the PDS, we use the decoder to further capture token re-
lationship. The outputs of the PDS can be seen as the represen-
tations corresponding to the tokens. So, we use self attention
mechanism to capture the semantic relationship in the sequence.
The decoder leverages a stack of attention blocks, and the keys,
values and queries are the outputs of the previous block. After
the decoder, we use a linear transformation to project the self
attention based semantic representation, and softmax functions
to compute probability distributions on the token vocabulary for
each position.
3.5. Learning
For optimizing the parameters of the model, we minimize the
position-wise cross entropy loss

CE(θ) = − 1

NL

∑
(x,y)∈D

L∑
i=1

logP (yi|x; θ). (8)

Table 1: The description of AISHELL-1. “Length” means the
average number of tokens per utterance.

#Utter. #Hour Length #Speaker
Training 120, 098 150 14.4 340
Development 14, 326 18 14.3 40
Test 7, 176 10 14.6 20

where D is the dataset which contains N pairs of speech and
token sequence (x, y), L is the maximum length we pad to, and
yi is the token at position i in token sequence y.
3.6. Inference
For decoding, we just select the token which has the high-
est probability at each position. Given an acoustic feature se-
quence, the predicted token at position i is

ŷi = argmax
yi

P (yi|x; θ). i = 1, · · · , L, (9)

After prediction, the filler tokens “<eos>” at the tail of the
sequence are removed.

4. Experiments
4.1. Datasets
We conduct experiments on a publicly available Chinese Man-
darin corpus AISHELL-1 [11]. The dataset includes about 150
hours of speech for training, about 18 hours of speech for de-
velopment, and about 10 hours speech for test. The speakers
of training set, development set, and test set are not overlapped.
All the recordings are in 16 kHz WAV format.

4.2. Experimental Setup
We use 80-dimension Mel-filter bank features (FBANK) as the
input, which are extracted every 10ms with 25ms of frame
length. The token vocabulary contains 4231 characters in train-
ing set and two special symbols, i.e., “<unk>” for unseen char-
acters and “<eos>” as the filler of the tail of a token sequence.

The structure of the LASO model is shown in Fig. 1. Each
layer of the two-layer subsampling CNN consists of 32 convolu-
tion filters with size 3× 3, and the stride on time axis is 2. The
activation functions of the CNN are ReLUs. All the attention
blocks used in the model are the same. Both the encoder and the
decoder have 6 attention blocks, i.e., Ne = Nd = 6 in Fig. 1.
All the attention blocks have 8 heads. We compare different
numbers of the attention blocks of PDS, i.e.,Ns = 1, 2, 3 and 4,
respectively. The intermediate dimensionality of the position-
wise feedforward network is 2048, and the activation function
is GLU. We train two types of LASO with different model di-
mensionalities Dm. We refer to the model with Dm = 512 as
LASO-base, and the model with Dm = 768 as LASO-big.

We re-implement Speech-Transformer as the baseline [5].
It uses the same CNN as our LASO architecture. Following
their configuration, both encoder and the decoder have 6 layers.
The dimensionality of the model is 512, and the intermediate di-
mensionality of the position-wise feedforward network is 2048.
The number of heads of the multi-head attention is 8.

All models are trained with the same procedure. We use
the Adam algorithm to train the model for 130 epochs. Each
batch contains about 100 seconds of speech, and we accumulate
gradients of 12 steps for simulating big batch [21]. We follow
the warm-up learning rate schedule [4]:

α = D−0.5
m ·min(step−0.5, step · warmup−1.5), (10)

and the warm-up step is set to 12000. To avoiding overfitting,
we set dropout rate to 0.1. We use SpecAugment [22] for data
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Table 2: Character Error Rates (CERs) on the development set
of the models with different numbers of attention blocks of PDS.

#block of PDS 1 2 3 4
LASO-base 6.4 6.5 6.5 6.4
LASO-big 6.2 6.2 6.3 6.2

Table 3: The character error rates (CERs) of the systems on
AISHELL-1. Latency is inference time per utterance on test set
(including time of feature extraction). Real-time factor (RTF)
is computed as the ratio of the total inference time to the total
duration of the test set. Inference is done utterance by utterance
without batching, on an NVIDIA RTX 2080Ti GPU.

System CER % RTF/LatencyDev. Test
KALDI (nnet3) * † ‡ - 8.6 -
KALDI (chain) * † ‡ - 7.4 -
ESPNet (Transformer) † [13] 6.0 6.7 -
A-FMLM [10] 6.2 6.7 -
Fan et al. [24] - 6.7 -
Transformer (ours) 6.1 6.6 0.19 / 961ms
LASO-base 6.4 7.3 0.0034 / 17ms
LASO-base + speed perturb 6.0 6.8 0.0034 / 17ms
LASO-big 6.2 7.0 0.0043 / 21ms
LASO-big + speed perturb 5.8 6.4 0.0043 / 21ms
* from the KALDI official repository.
† with speed perturbation based data augmentation.
‡ with i-vector based speaker adaptation.

augmentation, and we leverage label smoothing with 0.1 during
training. We average parameters of the models which are saved
at the last 10 epochs as the final model. The maximum length
L is set to 60, which is set by counting the characters in the
utterances of the training set.

All the systems are implemented with PyTorch [23].All the
experiments are conducted on an NVIDIA RTX 2080Ti GPU.
For evaluating inference speed, we predict one utterance once
for evaluate speed, i.e., the batch contains 1 utterance. For the
autoregressive models, beam-width is set to 5 and the maximum
decoding length is 60.

4.3. Results
We first compare the LASO with different numbers of attention
blocks of PDS on the development set. Table 2 shows the re-
sults. We can see that different numbers of attention blocks of
PDS impact the performance, but the difference is small. In the
rest of the experiments, we use 4 attention blocks in the PDS
module, i.e., Ns = 4.

The performances are shown in Table 3. We can see that the
LASO models achieve good performance with very low latency.
LASO-base achieves a 7.3% of CER on the test set. LASO-
big achieves a 7.0% of CER on the test set. Both LASO-base
and LASO-big outperform chain model (7.4%) [12], without
speed perturbation. And it is very close to the state-of-the-
art transformers (6.7%) and our re-implemented transformer
model (6.6%). These results confirm our idea: if the implicit
language semantic is captured, prediction of tokens without ex-
plicit relationship among tokens is feasible.

The performance of the bigger model LASO-big is better
than LASO-base. The large scale parameters and more layers
make the model more powerful to extract token-level semantic
representation for each position. To further improve the perfor-
mance, we augment training data with speed perturbation [25],

0 5 10 15 20 25 30 35 40
time step
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<eos>
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Figure 3: Visualization of the attention scores of the 4-th atten-
tion block. The horizontal axis is the time step of the outputs of
the encoder, and the vertical axis is the token sequence. The to-
ken sequence mean “the family are very happy”. We only show
the first 11 token positions for saving space.

and retrain the two LASO models. We use factors 0.9 and 1.1
to perturb the speed of the audio and combine the augmented
data with the original data. With speed perturbation, the CERs
of LASO-base and LASO-big are further reduced to 6.8% and
6.4%, respectively.

We also show inference speed in Table 3. We can see
that the latency of LASO models is much smaller than au-
toregressive models. The speed-up is about 50×. The non-
autoregressive structure makes LASO do not need multi-pass
forward computation in beam-search. And the feed-forward
structure of LASO makes parallel computation efficient.

To better understand the behaviors of the PDS module, we
visualize the attention scores of the 4-th attention blocks of the
PDS in LASO-big. The attention scores are the average of the
8 heads. We can see that the alignments of the meaningful to-
kens and the outputs of the encoder are from the upper-left to
the bottom-right. For the filler token <eos>, the alignment is
vague. Because no certain correspondence between the filler
token and the outputs of the encoder exists. Because different
head has different alignment in the multi-head attention, the av-
eraged scores are not very sharp.

5. Conclusions and Future Works
In this paper, we propose a new non-autoregressive speech
recognition model. We assume that speech signal contains the
relationship among tokens implicitly, and token sequence can
be generated without explicit language modeling. Based on this,
we propose the LASO model. LASO forward propagates only
one-pass for token generation, without beam-search. And be-
cause of the feedforward structure, parallel computation can be
implemented efficiently, and time cost of inference can be sig-
nificantly reduced. Experiments demonstrate that the proposed
models have very low latency and promising performances.
This work is the first result of the LASO model. In the fu-
ture, we will investigate how to improve the performance of the
LASO model by loss functions.

6. Acknowledgements
This work is supported by the National Key Research & De-
velopment Plan of China (No.2016YFB1001404), the National
Natural Science Foundation of China (NSFC) (No.61831022,
No.61901473, No.61771472, No.61773379) and Inria-CAS
Joint Research Project (No.173211KYSB20170061 and
No.173211KYSB20190049). This work is also (partially)
funded by Huawei Noah’s Ark Lab. We also thank the
anonymous reviewers for their invaluable comments.

3384



7. References
[1] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Ben-

gio, “End-to-end attention-based large vocabulary speech recog-
nition,” international conference on acoustics, speech, and signal
processing, pp. 4945–4949, 2016.

[2] S. Kim, T. Hori, and S. Watanabe, “Joint CTC-attention based
end-to-end speech recognition using multi-task learning,” in 2017
IEEE international conference on acoustics, speech and signal
processing (ICASSP). IEEE, 2017, pp. 4835–4839.

[3] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend
and spell: A neural network for large vocabulary conversational
speech recognition,” in 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016,
pp. 4960–4964.

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Advances in neural information processing systems, 2017, pp.
5998–6008.

[5] L. Dong, S. Xu, and B. Xu, “Speech-transformer: a no-recurrence
sequence-to-sequence model for speech recognition,” in 2018
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2018, pp. 5884–5888.

[6] J. Gu, J. Bradbury, C. Xiong, V. O. Li, and R. Socher,
“Non-autoregressive neural machine translation,” arXiv preprint
arXiv:1711.02281, 2017.

[7] J. Lee, E. Mansimov, and K. Cho, “Deterministic non-
autoregressive neural sequence modeling by iterative refinement,”
arXiv preprint arXiv:1802.06901, 2018.

[8] M. Ghazvininejad, O. Levy, Y. Liu, and L. Zettlemoyer, “Mask-
predict: Parallel decoding of conditional masked language mod-
els,” in Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), 2019, pp. 6114–6123.

[9] X. Ma, C. Zhou, X. Li, G. Neubig, and E. Hovy, “Flowseq:
Non-autoregressive conditional sequence generation with gener-
ative flow,” in Proceedings of the 2019 Conference on Empir-
ical Methods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), 2019, pp. 4273–4283.

[10] N. Chen, S. Watanabe, J. Villalba, and N. Dehak, “Listen and fill
in the missing letters: Non-autoregressive transformer for speech
recognition,” arXiv preprint arXiv:1911.04908, 2019.

[11] H. Bu, J. Du, X. Na, B. Wu, and H. Zheng, “Aishell-1: An
open-source mandarin speech corpus and a speech recognition
baseline,” in 2017 20th Conference of the Oriental Chapter of
the International Coordinating Committee on Speech Databases
and Speech I/O Systems and Assessment (O-COCOSDA). IEEE,
2017, pp. 1–5.

[12] D. Povey, V. Peddinti, D. Galvez, P. Ghahremani, V. Manohar,
X. Na, Y. Wang, and S. Khudanpur, “Purely sequence-trained neu-
ral networks for asr based on lattice-free mmi.” in Interspeech,
2016, pp. 2751–2755.

[13] S. Karita, N. Chen, T. Hayashi, T. Hori, H. Inaguma, Z. Jiang,
M. Someki, N. E. Y. Soplin, R. Yamamoto, X. Wang et al., “A
comparative study on transformer vs rnn in speech applications,”
arXiv preprint arXiv:1909.06317, 2019.

[14] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Con-
nectionist temporal classification: labelling unsegmented se-
quence data with recurrent neural networks,” in Proceedings of
the 23rd international conference on Machine learning, 2006, pp.
369–376.

[15] A. Graves, “Sequence transduction with recurrent neural net-
works,” arXiv preprint arXiv:1211.3711, 2012.

[16] C. Raffel and D. P. Ellis, “Feed-forward networks with atten-
tion can solve some long-term memory problems,” arXiv preprint
arXiv:1512.08756, 2015.

[17] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, “Language
modeling with gated convolutional networks,” in Proceedings of
the 34th International Conference on Machine Learning-Volume
70. JMLR. org, 2017, pp. 933–941.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 770–778.

[19] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,”
arXiv preprint arXiv:1607.06450, 2016.

[20] T. Q. Nguyen and J. Salazar, “Transformers without tears:
Improving the normalization of self-attention,” arXiv preprint
arXiv:1910.05895, 2019.

[21] M. Ott, S. Edunov, D. Grangier, and M. Auli, “Scaling neural
machine translation,” in Proceedings of the Third Conference on
Machine Translation: Research Papers, 2018, pp. 1–9.

[22] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D.
Cubuk, and Q. V. Le, “Specaugment: A simple data augmen-
tation method for automatic speech recognition,” arXiv preprint
arXiv:1904.08779, 2019.

[23] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch:
An imperative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems, 2019, pp.
8024–8035.

[24] Z. Fan, S. Zhou, and B. Xu, “Unsupervised pre-traing for
sequence to sequence speech recognition,” arXiv preprint
arXiv:1910.12418, 2019.

[25] T. Ko, V. Peddinti, D. Povey, and S. Khudanpur, “Audio augmen-
tation for speech recognition.” pp. 3586–3589, 2015.

3385


