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Abstract
Compression and quantization is important to neural networks
in general and Automatic Speech Recognition (ASR) systems
in particular, especially when they operate in real-time on
resource-constrained devices. By using fewer number of bits for
the model weights, the model size becomes much smaller while
inference time is reduced significantly, with the cost of degraded
performance. Such degradation can be potentially addressed by
the so-called quantization-aware training (QAT). Existing QATs
mostly take into account the quantization in forward propaga-
tion, while ignoring the quantization loss in gradient calculation
during back-propagation. In this work, we introduce a novel
QAT scheme based on absolute-cosine regularization (ACosR),
which enforces a prior, quantization-friendly distribution to the
model weights. We apply this novel approach into ASR task as-
suming a recurrent neural network transducer (RNN-T) archi-
tecture. The results show that there is zero to little degradation
between floating-point, 8-bit, and 6-bit ACosR models. Weight
distributions further confirm that in-training weights are very
close to quantization levels when ACosR is applied.
Index Terms: speech recognition, quantization-aware training
(QAT), recurrent neural network transducer (RNN-T), regular-
ization, absolute-cosine regularization

1. Introduction
For various applications, neural network (NN) models are of-
ten required to be executed fast so that user perceived latency is
small. This is especially important for applications with back-
and-forth interactions with customers, such as virtual assistants.
However, during training time, the NN model weights/variables
are mostly represented in 32-bit/floating-point format. The re-
sulting model typically has a very large number of parameters
and is slow during inference time. It is thus important that the
NN is compressed and quantized to reduce the model footprint.
For example, post-training quantization is often applied to NN
models, i.e. each weight/variable is quantized from 32 down to
16, 8, or even 4 bits. By operating with a smaller number of
bits, the model becomes smaller and faster, thus consumes less
memory and is able to facilitate real-time user interactions.

Unsurprisingly, post-training compression and quantization
usually leads to, sometimes significant, performance degrada-
tion for NNs. One of the solutions to this problem is to employ
the so-called quantization-aware training (QAT) schemes. The
intuition is that during model training, the effect of compres-
sion/quantization will be taken into account, thus mitigating the
accuracy loss introduced by post-training processing.

Due to its importance, QAT has attracted significant atten-
tion and various schemes have been proposed. In [1, 2, 3], the
authors introduced a fake-quantizer and a hashing function to
mimic the quantization effect during model training. Another
approach is to leverage on Gumbel-softmax trick, which is ca-

pable of learning discrete model weights [4]. In [5], Georges et
al. proposed to use Gaussian mixture to train and obtain net-
works with binary weight values. Most of the existing work
has focused on replicating the compression/quantization effect
in the forward propagation, under which the model loss is evalu-
ated. It is assumed that such loss already incorporates the quan-
tization effect, leading to no quantization-related term in the
back propagation step. As a consequence, quantization is only
loosely coupled into the gradient evaluation and weight update.
Another disadvantage of existing QAT schemes is high memory
consumption and intensive computation. This work presents a
novel QAT approach that efficiently addresses such problems.

Until recently, a common model architecture for ASR
is the deep neural network (DNN) - Hidden Markov Model
(HMM) approach, in which the acoustic model predicts the
senones/phonemes of each audio frame, while the language
model decides the sentence hypothesis [6, 7]. DNN-HMM
requires multiple intermediate components, such as lexicon
model and decision tree, that in turn depend on domain-
knowledge and human transcription effort. End-to-end (E2E)
systems have significantly reduced much of the dependen-
cies, by directly transducing the acoustic feature input into
character/word/word-piece sequence output. Some of the most
important approaches are Connectionist Temporal Classifica-
tion (CTC) [8, 9], Listen-Attend-and-Spell (LAS) [10], and re-
current neural network transducer (RNN-T) [9, 11]. Among
those emerging architecture, RNN-T has attracted significant at-
tention, due to its online processing capability (in contrast with
LAS) and no requirement for audio-output mapping (in contrast
with CTC). As a consequence, we thus leverage the RNN-T for
our QAT experiments. Note that our QAT approach is applica-
ble to other NN models with little modification.

In this work, we present a novel approach for QAT via reg-
ularization. The intuition is to impose on the model weights a
distribution which has a similar shape to that of a quantized
model. We achieve this by devising a new function called
absolute-cosine regularization (ACosR). The total loss thus in-
cludes both accuracy and ACosR losses, in which the ACosR
loss measures the similarity between our model and a quan-
tized one. We demonstrate the effectiveness of our approach
by applying it into an ASR system with RNN-T architecture.
In-training, the weight distribution shows that ACosR reliably
forces the weights to converge to the quantization levels, while
introducing zero to very little performance degradation for 8-
bit QAT. Investigation for 6-bit QAT models also shows a slight
degradation compared to floating-point baseline.

2. Related Works
Studies have shown that the NN footprint can be reduced sig-
nificantly with moderate performance degradation for various
tasks such as image recognition [3, 12], natural language un-

Copyright © 2020 ISCA

INTERSPEECH 2020

October 25–29, 2020, Shanghai, China

http://dx.doi.org/10.21437/Interspeech.2020-19913366



derstanding [4] or speech recognition [13]. Various techniques
have been proposed, including integer quantization [2], hashing
[3], vector quantization [14] and matrix factorization [15, 16].

To further improve the performance, various QAT ap-
proaches have been proposed over the years. One research di-
rection is to simulate the compression and quantization effect
during training, by incorporating integer quantization into the
NN structure [1, 2, 17]. Such approach has often been men-
tioned as “fake quantization” [18]. The main idea is to cal-
culate the loss assuming a quantized NN under forward prop-
agation. Since it is difficult to compute the weights’ gradi-
ent under quantization, most studies usually consider straight-
through estimators (STE) by ignoring quantization-related gra-
dient term in back propagation [18]. Under such assumption,
the approach is not strictly QAT anymore. Consider a toy ex-
ample of minw∈{0,1} fte(w) in which

fte(w) =

{
3(w − 0.4)2, w ≤ 0.4,

(w − 0.4)2, w > 0.4.
(1)

It is observed that the solution of minw∈{0,1} fte(w) is
w∗ = 1. Under fake quantization, since the quantization loss
is not included into gradient calculation, the problem becomes
w∗fq = quantizew∈{0,1} [arg minw fte(w)] = 0, which obvi-
ously is an incorrect solution.

The compression and quantization of NNs can also be
achieved by viewing it as finding a codebook and correspond-
ing code for each weight value [4, 19, 20]. Notably in [4],
Shu et al. introduced the Gumbel-softmax trick to compress
a word embedding for the natural language understanding task,
thus enabling the optimization of discrete weight values. Such
approaches, however, impose significant memory consumption
and computation since we need to learn both the codebook and
compositional codes of each weight.

The idea of applying regularization to improve post-training
quantization has been explored in [21, 22], in which the authors
applied multiple functions such as L2 and sawtooth, and ob-
served which function returns the best model after post-training
quantization. In a recent work [5], Georges et al. introduced a
Gaussian mixture regularization with two Gaussian functions to
learn a binarized NN, which achieves little performance degra-
dation versus floating-point model for an intent classification
task. Note that using a Gaussian mixture will require intensive
gradient computation, since each Gaussian function will need
to be evaluated for each model variable. For example, an ASR
system with 10-million parameters and 8-bit quantization will
require 28 Gaussian functions and 28 × 10 × 106 = 2.56 bil-
lion weight gradient calculations. Using Gaussian mixtures for
QAT is thus not suitable for many deep learning tasks.

3. Absolute-Cosine Regularization
The two main limitations of existing QAT approaches, namely,
no quantization-related gradient term and intensive computa-
tion/memory requirement, can be addressed efficiently with
ACosR. In this section, we describe the intuition and imple-
mentation of ACosR. Given a set of model weights W =
{w1, w2, ..., wN}, a compression/quantization scheme will
convert W into Wq = {q(w1), q(w2), ..., q(wN )}. Here
q(x) is a function that quantizes/compresses a value x into
one of the quantization levels Q = {q1, q2, ..., qK}. A quan-
tized weight distribution thus takes the form of Ψquantized(x) =∑K
k=1 αkδ(x, qk), in which {αk}Kk=1 are the scaling factors

Figure 1: Comparison between Ψquantized(x) with αk = 1, ∀k,
Qlinear = {...,− 2
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1, θ = 8. The shape of eACos(x) is similar to that of ACos(x).

and the delta function is defined as

δ(x, q) =

{
1, x = q,

0, otherwise.
(2)

To achieve fast inference and low user-perceived latency
(UPL), most of NN models employ linear quantization schemes.
In that case, Qlinear = {...,−2q,−q, 0, q, 2q, ...}. Fig. 1 shows
an example of a quantized weight distribution Ψquantized(x) with
αk = 1, ∀k when Qlinear = {...,− 2
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, ...}. In

ACosR approach, we seek to enforce such quantized weight dis-
tribution upon the weights during training. Recall that,

wbest = arg max
w
P(w|observed data)

= arg max
w

P(observed data|w)P(w)

P(observed data)

= arg max
w

[lnP(observed data|w) + lnP(w)]

= arg min
w

[Laccuracy(w) + Lregularization(w)] . (3)

Here, wbest, P(.), P(.|.), Laccuracy(w), Lregularization(w), and
ln denote the best weights, probability of an event, conditional
probability of an event given another, model loss due to accu-
racy, model loss due to regularization, and natural logarithm,
respectively. The weight update at each training step is

w← w− learning-rate×{
∂Laccuracy(w)

∂w

∣∣∣∣
w

+
∂Lregularization(w)

∂w

∣∣∣∣
w

}
. (4)

Eq. (3) thus suggests that we can compel a weight distribu-
tion by introducing an appropriate regularization function. The
main difficulty is to select a function f(x) in which exp(f(x))
has similar shape as that of Ψquantized(x), and f(x) requires min-
imal additional computation as well as memory consumption.

For QAT, we achieve such goal by using ACosR
Lregularization(w) = Lacosr-reg(w) = −ACos(w), (5)

in which the absolute-cosine function is defined as
ACos(x) = α |cos(πθx)| , (6)

with α being a scaling factor and θ being the cosine frequency,
to be defined based on a specific linear quantization scheme.
Fig. 1 visualizes ACos(x) and compares it with the desirable,
quantized weight distribution Ψquantized(x). Note that the shape
of eACos(x) after being scaled is similar to that of ACos(x).

Another perspective for using ACos(x) is that it approx-
imates the quantization loss. In particular, it is interest-
ing to compare Lacosr-reg(x) = −ACos(x) with the L2 loss
LL2-quant(x) = αL2 |x− q(x)|2, which measures how close a
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Figure 2: Derivative ofLacosr-reg(x) andLL2-quant(x) with θ = 2,
α = 1 and αL2 = π.

Figure 3: Model diagram of RNN-T. Here the joint-network
might have different architectures.

weight x is to its quantized value q(x). Note that it is difficult
to implement LL2-quant, as it requires a mixture of L2 regulariza-
tion centering at quantization levels. Similar to Gaussian mix-
ture approach [5], that leads to intensive gradient computation
and memory consumption.

We first observe that as a weight value approaches one
of the quantization level qk, both function Lacosr-reg(x) and
LL2-quant(x) becomes smaller and smaller. We further compare
the derivatives of Lacosr-reg(x) and LL2-quant(x), which are de-
rived and illustrated in Eq. (7) and Fig. 2:

∂Lacosr-reg(x)

∂x
=


απθ sin(πθx), x ∈

[
4m−1

2θ
, 4m+1

2θ

]
,

m ∈ {...,−1, 0, 1, 2, ...}
−απθ sin(πθx), otherwise.

∂LL2-quant(x)

∂x
= 2αL2 (x− q(x)) (7)

As shown in Fig. 2, the derivative is positive when a weight
value is near but larger than a quantization level, and negative
in the opposite case. From Eq. (4), it is apparent that the weight
values will be driven towards the quantization levels by using
ACosR. Furthermore, we notice a significant similarity between
the derivatives of Lacosr-reg(x) and LL2-quant(x). This confirms
that ACosR is an effective measurement of how quantization-
friendly a model is.

Finally, it is observed that ACos(x) is almost everywhere
differentiable and quasi-convex, thus guaranteeing the weight
convergence. Furthermore, since we only leverage on one func-
tion for regularization, the gradient computation and weight
update will require small additional memory consumption and
computing resource. This fact, as discussed above, is very im-
portant to machine learning applications that have large num-
bers of weights such as ASR or Machine Translation.

Table 1: Joint network (JN) architectures and numbers of word-
pieces (WPs) under different investigated scenarios.

Data JN # of WPs
Setup 1 English, Librispeech one FC layer 2.5K
Setup 2 English a simple addition operator 10K
Setup 3 French a simple addition operator 10K

Table 2: Amount of training and testing data (hours)

Training Testing

Freq. Apps. Enterm.

English 23K 115 30 26
French 10K 98 41 38

dev-clean dev-other test-clean test-other

Librispeech 960 5.4 5.3 5.4 5.1

4. Experiment Setup
4.1. Model architecture

In this work, we apply QAT-ACosR into ASR task and study its
effectiveness. In particular, we consider an ASR system based
on the RNN-T architecture shown in Fig. 3. An RNN-T model
consists of 4 main components: encoder, decoder, joint net-
work, and a word-piece model which provides the words for de-
coding hypotheses. The encoder extracts acoustic features from
the audio input xt, while the decoder learns the relation be-
tween different output symbols. Loosely speaking, the encoder
and decoder play the roles of acoustic and language model in
conventional DNN-HMM or CTC architectures.

Throughout our experiments, the encoder network consists
of 5 Long-Short Term Memory (LSTM) layers each with 1024
hidden units followed by a fully-connect (FC) layer. Similarly,
the decoder is comprised of 2 LSTM layers each with 1024
hidden units and a FC layer. The dropout rate for each layer
is fixed at 30%. To show the effectiveness and versatility of
ACosR for QAT, we considered two languages, i.e. English and
French, and conducted multiple experiments with different joint
network (JN) architectures as well as numbers of word-pieces
(WPs). Please refer to Tab. 1 for descriptions of each scenario.
The number of parameters is ≈ 56− 60 M for each setup. Our
models do not include language model/second-pass rescoring.

4.2. Data

We investigate the model performance for English and French
ASR. We train our RNN-T models with 23000 (23k) and 10000
(10k) hours of audio for English and French, respectively, which
encompasses all far-field virtual assistant tasks. For testing,
we consider three different types of datasets: Frequent, Appli-
ances, and Entertainment. Here, Frequent dataset includes tasks
that are frequently queried, while Appliances and Entertainment
contain queries from specific supported Appliances and Enter-
tainment tasks. Note that the testing datasets are not included
in the training counterpart, and Frequent dataset does not con-
tain either Appliances or Entertainment testset. All datasets are
anonymized and human-transcribed. We also train and evaluate
an RNN-T model under Setup 1 (see Tab. 1) with Librispeech
data [23]. Tab. 2 presents an overview of the amount of training
and testing data for various cases.

5. Results and Discussion
In this section, we compare the performance of the models de-
scribed in Tab. 1 for three cases: floating-point training, in
which there is no QAT applied, and QAT via ACosR with either
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Table 3: Comparisons of floating-point baseline with QAT RNN-T models for various test sets. Here, “nWER” represents
the WER normalized by that of floating point-Setup1-Entertainment, and “rel. dgrd” denotes relative WER degradation
compared to floating-point model in each setup and dataset.

Entertainment Appliances Frequent WgtC (%)
nWER rel. dgrd. (%) nWER rel. dgrd. (%) nWER rel. dgrd. (%)

Setup 1
floating point 1.00 – 0.60 – 1.12 – –
8-bit ACosR 0.97 –3.02 0.58 –3.23 1.10 –2.01 99.4
6-bit ACosR 0.98 –1.19 0.58 –2.51 1.14 –1.05 99.2

Setup 2
floating point 1.04 – 0.58 – 1.12 – –
8-bit ACosR 1.02 –1.35 0.58 –0.74 1.12 –0.21 99.5
6-bit ACosR 1.07 3.12 0.60 2.95 1.14 1.63 99.1

Setup 3
floating point 1.31 – 0.68 – 1.16 – –
8-bit ACosR 1.33 1.53 0.69 1.96 1.16 0.00 99.6
6-bit ACosR 1.34 2.22 0.70 2.37 1.17 1.48 99.0

Table 4: Actual WERs (%) of floating-point and QAT models for
Librispeech data and Setup 1. Largest relative degradations for
8-bit and 6-bit QAT are 0.66% and 2.68%, respectively.

dev-clean dev-other test-clean test-other WgtC (%)

f. p. 8.11 21.27 8.68 22.29 –
8-bit 8.15 21.41 8.70 22.36 99.3
6-bit 8.32 21.84 8.90 22.82 99.4

8-bit or 6-bit . Here x-bit ACosR means that we apply regu-
larization to achieve a weight distribution with 2x quantization
levels. We fix α = 0.005 while θ = 27 and θ = 25 for 8-bit and
6-bit QAT models, respectively. For far-field datasets, we report
the results normalized by the WER for floating point model un-
der Setup 1 and Entertainment dataset, which is smaller than
10%, in Tab. 3. For Librispeech data, we show the actual WER
in Tab. 4. From Tab. 3 and Tab. 4, it is observed that the QAT
achieves similar performance to the floating point baseline, es-
pecially for 8-bit QAT models for which there is zero to little
accuracy degradation.

Consider the performance of 8-bit QAT models under far-
field datasets first. There is even a slight improvement for 8-bit
QAT over floating-point baseline under Setup 1 and 2, which
can be explained by the fact that applying regularization leads
to better generalization in certain cases. Under Setup 3, how-
ever, 8-bit QAT model slightly underperforms its floating-point
counterpart. For Librispeech data, we also observe very little
degradation, i.e. less than 0.66% relative, for 8-bit QAT. The
6-bit QAT model, on one hand, performs on par with 8-bit QAT
and surpasses floating-point baseline under Setup 1 with far-
field dataset. On the other hand, under Setup 2 and 3 scenar-
ios or with Librispeech data, 6-bit QAT models achieve con-
sistently worse performance for both far-field and Librispeech
datasets. As discussed above, regularization is beneficial under
certain cases, however, it cannot mitigate the degradation effect
of low-bit quantization on the model performance. Overall, 6-
bit QAT models only degrade by at most 5% relative compared
to its floating-point cases. The topic of low-bit QAT will be
pursued in subsequent works.

In Tab. 3 and Tab. 4, we also report the weight convergence
(WgtC), which represents the percentage of model weights that
converged to the quantization levels during training. Here a
weight is said to be converged to a quantization level if the
difference between them is less than 10−6. The convergence
rate validates that the vast majority of the weights have con-
verged to one of the quantization levels, thus enabling efficient

Figure 4: Decoder kernel weight distribution during training
for RNN-T trained with QAT-ACosR.

post-training quantization. To illustrate this point, we further
present the distribution for the RNN-T decoder weights under
QAT-ACosR during training in Fig. 4. Note that each LSTM
layer has three weight components: kernel, recurrent kernel,
and bias, while each FC has two: kernel and bias. However, due
to the space constraint, here we only show the kernel weights for
different decoder layers, and omit other components. The figure
has been zoomed in on the near-zero region to clearly depict that
the weights are very close to the quantization levels. This will
allow efficient post-training quantization of the weights without
any significant accuracy loss.

6. Conclusions
In this work, we presented a novel quantization-aware training
method for deep neural networks using regularization. Our ap-
proach imposed to the model a weight distribution which is sim-
ilar in shape to that of a quantized model. We achieved that by
introducing a new function called Absolute-Cosine and incor-
porating this function to the model loss. Theoretical investiga-
tions further confirm that Absolute-Cosine regularization loss
is a good approximation for the quantization loss of the model
weights. Using only one regularization function, our approach
requires much smaller additional memory and computation re-
sources compared to existing QAT schemes. We evaluated our
approach in the speech recognition task by utilizing a speech
recognition system based on RNN-T. Our results show that QAT
with ACosR results into zero to little performance degradation
under various test sets.
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