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Abstract

Distant speech processing is a challenging task, especially when
dealing with the cocktail party effect. Sound source separation
is thus often required as a preprocessing step prior to speech
recognition to improve the signal to distortion ratio (SDR). Re-
cently, a combination of beamforming and speech separation
networks have been proposed to improve the target source qual-
ity in the direction of arrival of interest. However, with this type
of approach, the neural network needs to be trained in advance
for a specific microphone array geometry, which limits versatil-
ity when adding/removing microphones, or changing the shape
of the array. The solution presented in this paper is to train a
neural network on pairs of microphones with different spacing
and acoustic environmental conditions, and then use this net-
work to estimate a time-frequency mask from all the pairs of
microphones forming the array with an arbitrary shape. Using
this mask, the target and noise covariance matrices can be esti-
mated, and then used to perform generalized eigenvalue (GEV)
beamforming. Results show that the proposed approach im-
proves the SDR from 4.78 dB to 7.69 dB on average, for various
microphone array geometries that correspond to commercially
available hardware.

Index Terms: speech separation, GEV beamforming, direction
of arrival, microphone array

1. Introduction

Distant speech processing is a challenging task, as the target
speech signal is often corrupted by additive noise and rever-
beration from the environment [1]. Moreover, robust speech
recognition often relies on sound source separation when deal-
ing with the cocktail party effect. Speech separation methods
can be divided in two main categories: blind speech separation
and informed speech separation. Blind speech separation re-
lies strictly on the mixture spectrogram to restore the individual
sources, whereas informed speech separation uses additional in-
formation such as video, direction of arrival and speaker fea-
tures.

Blind speech separation is particularly challenging as it
needs to solve the permutation ambiguity. In fact, the order
of the separated signals may differ from the order of the la-
bels, which makes supervised learning difficult. To solve this
issue, deep clustering (DC) uses contrastive embedding vectors
and unsupervised clustering using k-means [2, 3, 4, 5, 6]. Al-
ternatively, permutation invariant training (PIT) aims to find all
possible permutations during training and keep the optimal one
[7, 8, 9]. These methods aim to separate all sources in the mix-
ture, though sometimes only a specific target source matters. In
the latter case, using an objective function that emphasizes only
on the target source leads to better performance [10].

Informed speech separation relies on additional informa-
tion to perform separation. For instance, SpeakerBeam uses the
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speaker identification features to extract a specific speaker from
amixture [11]. When the video is also available, it is possible to
solve the permutation issue by combining the audio signal and
the motion of the lips [12, 13, 14]. Moreover, when dealing with
multiple channels, it is often common to use the direction of
arrival (DOA) of sound to solve permutation [15]. Beamform-
ing is thus a special case of informed speech separation, as it
exploits the spatial information to reconstruct the target source.
This paper focuses on a beamforming approach that exploits the
target source DOA information.

Delay and Sum (DS) and Minimum Variance Distortionless
Response (MVDR) beamformers [16, 17, 18] improve the sig-
nal to noise ratio (SNR) of the target sound source, but relies on
DOA of sound derived from the anechoic model for sound prop-
agation, which often differs from the actual condition in a rever-
berant environment. On the otherhand, Generalized eigenvalue
decomposition (GEV) beamforming maximizes the SNR using
only the target and interfering signals covariance matrices [19].
Heymann et al. [20, 21, 22] show that these covariance matrices
can be estimated with a bi-directional Long Short-Term Mem-
ory (BLSTM) network trained on noisy speech, and that blind
analytic normalization (BAN) gain minimizes non-linear dis-
tortion for the separated signal. To be effective, this approach
assumes that the interfering sounds differ from speech, which
is a major limitation when dealing with the cocktail party ef-
fect. Chen et al. [23] propose to use the DOA of sound to
estimate a time-frequency mask of a target source with a neural
network, and then use this mask to compute the target and noise
covariance matrices. This approach performs well but has one
major drawback: the geometry of the microphone array needs
to be known prior to training the neural network, which impacts
considerably the versability of the system when dealing with
microphone arrays of arbitrary shapes. Maldonado et al. [24]
present a solution to deal with the arbitrary shape, but the time-
frequency mask obtained from the microphone array DOA is
essentially applied to a single channel to extract the target spec-
trum and no further beamforming is used during separation. Liu
etal. [25] also propose to estimate a time-frequency mask based
on the cross-spectrum between two microphones and the target
time difference of arrival (TDOA), but their approach is limited
to two microphones and the spacing between the microphones
is fixed.

The method presented in this paper, called SteerNet, relies
on a neural network trained on pairs of microphones with dif-
ferent spacing. This network generates a time-frequency soft
mask for each pair of microphones for a set of target TDOAs,
obtained from the DOA of the target source and the array ge-
ometry. These masks are combined and used to compute target
and noise covariance matrices and to perform GEV beamform-
ing. This method is appealing as it makes the best use of GEV
beamforming using DOA to solve permutation, while being able
to generalize to microphone arrays of arbitrary shapes.
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2. SteerNet

Figure 1 shows the SteerNet method to separate a target speech
source using a microphone array with an arbitrary geometry. In
this scenario, there are two speech sources, the target and in-
terference, and it is assumed that these sources have different
DOAs. SteerNet assumes that the DOA of the target speech is
available and is obtained using sound source localization meth-
ods [26, 27, 28], or using a visual cue when both optical and
acoustic images are properly aligned [29].

Using the target DOA, the idea is to generate a time-
frequency mask using a neural network to capture the target
source components. To deal with arbitrary geometries, the
method breaks down the shape of the array in pairs of micro-
phones, and use the TDOAs between microphones to generate
multiple masks. Masks that put emphasis on the target source
can be estimated when the target and interference TDOAs are
different as the permutation is easily solved. This is the case
with most pairs of microphones, yet some of them can have
similar TDOAs. When both TDOAs are similar, SteerNet gen-
erates a mask that capture both sources, as permutation cannot
be solved spatially. The overall target source mask is obtained
by summing all the estimated masks amongst all pairs of micro-
phones. This leads to a target mask that emphasizes the time-
frequency region dominated by the target source due to the pairs
of microphones that allow discrimination between sources. The
noise mask is obtained as the complement of the target. The
approach finally uses GEV-BAN beamforming, which relies on
the target and noise covariance matrices (denoted as ®xx and
P, respectively) obtained from the estimated masks.

2.1. Oracle pairwise ratio mask

Let’s define the DOAs of the target and interference as 8; € S 2
and 6; € S? respectively, where S = {x € R? : ||x|]2 = 1},
holds unit vectors and || ... ||2 stands for the Euclidean norm.
Let’s also define the set of indexes of microphone pairs as
Q= {(x,y) € D*: x <y}, where theset D = {1,2,..., D}
contains the microphone indexes, and D stands for the num-
ber of microphones. The TDOA for microphones (u,v) € Q
corresponds to the following expression:

Tu,v = 7(1-“ _r’u) '9t7 (1)
where r,, ry, fs and c stand for the positions of microphones u
and v (in m), the sample rate (in sample/sec) and speed of sound
(in m/sec), respectively. The steering vector in the direction of
the target for a pair of microphones is defined as:

2w Tu,v
AUVU(L f) = €xp (]fT)7

2
where N stands for the number of samples per frame in the
Short Time Fourier Tranform (STFT), ¢ the frame index, and f
the frequency bin index.

Similarly, the difference between TDOAs for a given mi-
crophone pair associated to the target and interfering speech
sources is estimated as:

Atue = 15100 0 (ru v, 3

The steering vector aims to cancel the phase difference of
the target source in the cross-spectrum between microphones u
and v:

Yu»'” (t7 f) = A“«’U(tv f)Yu (t7 f)Y’U (ta f)*7 (4)
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where the expression {. .. }* stands for the complex conjugate,
and Y, (¢, f) and Y, (¢, f) stand for the spectra of microphones
u and v, respectively. The gain G, ., is defined as a function
of ATy ., where the goal is to ensure it goes to a value of 1
when both TDOAs are similar, and goes to zero when they are
different. To smooth the transition and control the sharpness, a
sigmoid function is used (« is the steepness and (3 the offset):

_ exp{-a(Ar, - A)}
1+ exp{—a(Aty,, — B)}’

This gain is then used to generate the ideal ratio mask for
microphones u and v:

Guv &)

: _ 1Su(t, )PP + GupolLu(t, f)I?

Mao(t: f) = 1Su(t, F)I2 + [Lu(t, £)2 + |Bu(t, ) ©
2 2

Moot ) = — NS D+ GualLut, )] o

1Su(t, AP + [1o(t, /)P + | Bu(t, AP

When both the target and interference share a similar
TDOA, the gain goes to one and the oracle mask captures both
the target (S (¢, f) and Sy (¢, f)) and interference (I, (¢, f) and
I,(t, f)), and rejects the diffuse background noise (B (¢, f)
and B, (¢, f)). On the otherhand, when discrimination between
the target and interference is possible due to different TDOAs,
the gain goes to 0 and the oracle mask captures only the tar-
get source. Finally, the mask for a pair of microphones (u, v)
(denoted as M, (t, f)) is obtained as follows:

MU’U(t, f) = Mﬁ7v(t7 f)MU717(t7 f)

2.2. Mask estimation using BLSTM

®

To estimate the mask, the method first extracts the log absolute
value Ly, € [0, +00] and the phase Py, € [—m,+7] from
the cross-spectrum Y, ., as:

Lo = log(||Yuu |5 + €) — log(e), ©)
Puo=4Y4, (10)

where the constant € holds a small value (here set to 10™2°) to
avoid large negative values as the energy goes to zero and £
stands for the angle. Both features are then concatenated as:

an

The ideal mask M, , € UT*F introduced in (8) is then
estimated from C,,, € RT*2F using the following non-linear
function:

Cu,v - (Lu,'m Pu,v)~

g :RTX2F —>MTXF, (12)

where the set U = [0, 1] as the soft mask lies between 0 and 1,
T stands for the number of frames and F' for the number of fre-
quency bins. For this task, the method uses a BLSTM [30] with
two layers with a hidden size of 2H = 256 and one dropout
layer (with a probability of p = 0.2), as shown in Fig. 2. A
batch norm layer is also added to speed up convergence while
training. The BLSTM generates the estimated mask Mu,v for
each microphone pair at index (u, v):

M.u,» = g(Cuw)- (13)

During training, the loss function L corresponds to the
mean square error weighted by the log absolute value of the
cross-spectrum to give more weight to time-frequency regions
dominated by speech [31] and ignore silence periods:

L= [(My,y = Mu,0) © Luoll3, (14)
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Figure 1: Overview of SteerNet. In this example, the TDOAs of the target and interference are identical for the pairs (1,2) and (3,4),
and thus the mask captures both sources, whereas the mask discriminates the target from the interfering source with other pairs.
These masks are then used to compute the covariance matrices for the target (Pxx) and noise (Pnw) signals, and then GEV-BAN

beamforming produces the separated source.
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Figure 2: Architecture of the BLSTM network. The expressions
T, F and H stand for the number of frames, the number of
[frequency bins and the number of hidden states, respectively.

where © stands for the Hadamard product.

Once the BLSTM is trained, it is used to estimate the pair-
wise masks by inference, and the overall mask is obtained ac-
cording to:

M= L > Mo, (15)
‘Q‘ (u,v)€Q

where | . .. | stands for the cardinality of the set.

2.3. GEV-BAN beamforming

As suggested in [20], the target and noise covariance matrices
can be estimated with a soft mask M, between O and 1:

(I)Vy(f) = Z MV(t7 f)Y(ty f)Y(ta f)H7
teT
where 7 = {1,...,T}, v € {X, N} (with X being the target,
and N being interference and background noise), Y (¢, f) €
CMx1 £ .} is the Hermitian transpose and:

_ )
ML) = {1—M<t,f>

(16)
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The vector Ferv (f) € CM then corresponds to the princi-
pal component of the following generalized eigenvalue decom-
position:

Forv(f) = P{®nn(f) " ®xx(f)}, (18)

where P{. .. } stands for the principal component and {...}*
for the matrix inverse. Heymann et al. [20] also suggest using a
blind analytic normalization (BAN) gain to cope with potential
non-linear distortion of the target source, as follows:

(f) = \/FgEv(f)‘I’NN(f)‘I’NN (/) Faev(f)
Fi., (®enn(f)Ferv(f)D? ’

gBAN

19)

Finally, the reconstructed spectrogram for the target source
Z(t, f) can be obtained according to:

Z(t, f) = gpan ()F&pv (HY (¢, f). (20)

3. Dataset

To train the network, we generate a dataset of synthetic stereo
speech mixtures in simulated reverberating rooms. The speech
segments for training come from the LibriSpeech ASR corpus
[32] that contains 360 hours of English text read by 482 men
and 439 women, sampled at fs = 16000 samples/sec. A sim-
ulator based on the image method [33] generates 10, 000 room
impulse responses (RIRs).

For the network to generalize to various conditions, we
sample the parameters in Table 1 according to a uniform dis-
tribution. Each RIR is defined by the room dimensions, reflec-
tion coefficient and speed of sound. The spacing between both
microphones varies to generalize to arbitrary microphone array
shapes, and the microphone pair is rotated randomly and po-
sitioned in the room by making sure there is a minimum dis-
tance between the microphones and all surfaces. Moreover, the
sources are positioned randomly in the room in such a way that
the distance between them and the microphones lie within a de-
fined range.

For each training sample, we convolve two speech segments
of 5 seconds from Librispeech (one for the target and the other
one for the interference) with one of the generated RIR. A ran-
domly selected signal-to-noise ratio (SNR) then defines the gain



of each source. A random gain is also applied to each micro-
phone, to cope with the potential gain mismatch between the
microphones. Some diffuse white noise with random variance
is then added to the mixture. Finally, all the signals are scaled
by a common linear gain such that the signal range models sce-
narios with different volume levels. The STFT uses frames of
N = 512 samples, spaced by AN = 128 samples.

Table 1: Simulation parameters.

Parameters Range
Room length (m) [5.0,10.0]
Room width (m) [5.0,10.0]
Room height (m) [2.0,5.0]
Surfaces reflection coefficient [0.2,0.8]
Speed of sound (m/s) [340.0, 355.0]
Spacing between mics (m) [0.04, 0.20]
Min. dist. between mics and surfaces (m) 0.5
Dist. between sources and mics (m) [1.0,5.0]
White noise variance [0.5,2.0]
Signal to noise ratio (dB) [—5.0,45.0]
Overall linear gain [0.01,0.99]

At test time, we use the test set from LibriSpeech, and con-
volve the sound segments with 1000 RIRs generated for each
array geometry. We use the same simulation parameters as in
Table 1, but ignore the spacing between microphones as the
shapes correspond to the geometries of commercially available
microphone arrays, as depicted in Figure 3. All these micro-
phone arrays are planar, which means they span the xy-plane.
Note that the target and interference sources are positioned such
that there is at least one pair of microphones that leads to dis-
criminative TDOAs.

+12.5 +12.5 +12.5

z (cm) z (cm) z (cm)
— — o|e — bl
£ hal £ 20 : :
= ole = ole = ole
125 0 125 -12.5 0 +12.5-12.5 0 +12.5
(a) ReSpeaker USB[34] (b) ReSpeaker Core (c) Matrix Creator [35]
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= o|® = =
g o oy E o ° 4 B
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125 0 125 -12.5 0 +12.5-12.5 0 +12.5

(d) Matrix Voice  (e) MiniDSP UMA [36] (f) MS Kinect [37]

Figure 3: Microphone array geometries

4. Results and Discussion

Results demonstrate that SteerNet performs efficient separation
for a wide range of microphone array geometries and environ-
mental conditions. For example, Fig. 4 shows the reference sig-
nal, the mixture and the separated signal with a Matrix Voice
microphone array. Most features (formants, pitch, transient,
etc.) are properly restored without any non-linear distortion,
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which is expected with GEV-BAN beamforming. However,
there is some extra energy in the low frequencies, which is also
expected as the Matrix Voice microphone array has a small aper-
ture, making separation more challenging in low frequencies.

Frequency (kHz)

300 400

Frame index

200 600

(b) Mixture at Microphone 1 (SDR = -6 dB)

300
Frame index

(c) Separated signal with SteerNet (SDR = +9 dB)

500 600

Figure 4: Example with the Matrix Voice 8-microphone array.

The Signal-to-Distortion Ratio (SDR) is also computed for
all the test samples using the BSS Eval toolbox [38]. Table 2
shows that the SDR improves with all microphone arrays, re-
gardless of the shapes. This confirms that SteerNet enhances a
target speech signal using its DOA and a trained BLSTM that
generalizes for any pairs of microphones. It should be noted that
the network is trained using the Adam optimizer with a learning
rate of 0.001 and converges in around 20 epochs. The parame-
ters to estimate the gain for the oracle mask during training in
(5) are set to « = 10.0 and S = 1.0. The Python code with
audio samples is available online'.

Table 2: SDR improvement (more is better).

Microphone Array ~ ASDR (dB)
ReSpeaker USB +7.69
ReSpeaker Core +5.63

Matrix Creator +5.13
Matrix Voice +4.78
MiniDSP UMA +4.78
Microsoft Kinect +6.83

The next step would be to optimize the hyperparameters for
the proposed BLSTM architecture, and also investigate other
neural network architectures. Moreover, SteerNet considers
only one interfering source. This number could be increased to
reflect more complex interaction scenarios. Background noise
from various environments could also make the model more
representative of real-life scenarios. Finally, it would be rele-
vant to reduce the time context (currently set to 5 seconds) to
adapt the approach to online processing with low latency.

Uhttps://github.com/francoisgrondin/steernet
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