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Abstract
One of the major challenges in Speech Emotion Recognition
(SER) is to build a lightweight model with limited training data.
In this paper, we propose a lightweight architecture with only
fewer parameters which is based on separable convolution and
inverted residuals. Speech samples are often annotated by mul-
tiple raters. While some sentences with clear emotional content
are consistently annotated (easy samples), sentences with am-
biguous emotional content present important disagreement be-
tween individual evaluations (hard samples). We assumed that
samples hard for humans are also hard for computers. We ad-
dress the problem by using focal loss, which focus on learning
hard samples and down-weight easy samples. By combining
attention mechanism, our proposed network can enhance the
importing of emotion-salient information. Our proposed model
achieves 71.72% and 90.1% of unweighted accuracy (UA) on
the well-known corpora IEMOCAP and Emo-DB respectively.
Comparing with the current model having fewest parameters
as we know, its model size is almost 5 times of our proposed
model.
Index Terms: Speech emotion recognition, lightweight, in-
verted residuals, focal loss

1. Introduction
Emotion plays an important role in daily human interactions,
it helps us to contact with each other by expressing our feel-
ings and providing feedback. Recognizing emotion from speech
correctly can help intelligent spoken interaction system to un-
derstand the potential user’s intention, and further improve the
user’s experience. SER is an important technology to under-
stand human feelings. There has been a growing number of
researches and applications in recent years.

Recently, deep learning has attracted increasing attention
due to its outstanding performances for many tasks, more and
more methods utilizing neural networks to extract valid fea-
tures from raw data have emerged in the field of SER. Most
of them focus on training strategy or modeling networks. Car-
los et al. [1, 2, 3] explored a robust training strategy by estab-
lishing connections between the data. Dai et al. [4] proposed
a model by cooperating softmax cross-entropy and center loss
together to learn discriminative features. Ando et al. [5] pro-
posed soft-target training to effectively handle both clear and
ambiguous emotional utterances. Sahu et al. [6] compressed the
high dimensional feature to low dimensionality for maximally
capturing the difference between various emotion classes. Mir-
samadi et al. [7] presented different recurrent neural networks
(RNN) with local attention architectures for learning features
in speech emotion recognition. Tao et al. [8] proposed a new

variation of Long short-term memory (LSTM), advanced LSTM
(A-LSTM), for better temporal context modeling for SER. Both
of them proved that RNN is effective for sequence data. Chen et
al. [9] employed attention-based convolutional RNN (ACRNN)
network to extract high-level emotional feature representations
from the log Mel-spectrogram. Their model showed better per-
formance. The convolution neural networks (CNN) were used
to learn affective salient features and manifested excellent per-
formances on several benchmark datasets [4, 10, 11, 12]. Al-
though CNN has been innovated to achieve better recognition
performance, it needs a large training parameters. However,
the training data for SER is extremely limited. Thus, the SER
task is not suitable for models with large number of parame-
ters. Chollet et al. [13] presented Xception model based on the
depthwise separable convolution, which can learn richer feature
representations with fewer parameters. This property provides
a theoretical and experimental basis for us to build a lightweight
model. Sandler et al. [14] proposed MobileNetV2 suggesting
that using linear layers is crucial as it prevents non-linear op-
eration from destroying too much information. Inspired by the
Xception and MobileNetV2, we built a lightweight model based
on separable convolution using inverted residuals for speech
emotion recognition in this paper. And with the use of focal
loss, the performance of proposed model is further improved.

The remaining of the paper is organized as follows. Section
2 reviews previous works. Section 3 introduces the proposed
method. Section 4 describes the experiments and the results.
Finally in section 5, we present conclusions.

2. Related Work
Depthwise separable convolution [13], factorizing a standard
convolution into a depthwise convolution followed by a point-
wise convolution (i.e., 1 × 1 convolution), drastically reduces
computational complexity. Specifically, the depthwise convo-
lution performs a spatial convolution independently for each
input channels, while the pointwise convolution is employed
to combine the outputs from the depthwise convolution. Re-
sults reported on Xception, which is based on depthwise sepa-
rable convolution, showed that the absence of any non-linearity
leads to both faster convergence and better final performance.
MobileNets [15] is based on a streamlined architecture that
uses depthwise separable convolutions to build lightweight deep
neural network. Subsequently, the MobileNetV2 [14] presented
inverted residuals and linear bottlenecks. It is also based on the
depthwise separable convolution. The authors found that it’s
important to remove non-linearities in the narrow layers in or-
der to maintain representational power. Inspired by Xception
and MobileNetV2, we build a model based on separable convo-
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Figure 1: The proposed lightweight model. The entry flow maps the log-Mels of an utterance to a high-dimensional representation and
the middle flow extracts richer information. The exit flow outputs predicted class label.

lution combining with inverted residuals.
Not all parts of an utterance including emotion in real scene,

thus, the attention mechanism is applied to learn emotion rel-
evant regions for utterance-level SER [7, 9, 12]. Conventional
SER methods rely on adopting majority votes from multiple an-
notators as the ground truth. However, the inconsistency of an-
notations leads to the difficulty of training directly. Lotfian et
al. presented curriculum learning method to learn hard samples
from crowdsourced labels [1]. Chou et al. applied hard and soft
labels to address the inconsistency of annotations [16]. Focal
loss [17] was proposed to address the one-stage object detec-
tion scenario in which there is an extreme imbalance between
foreground and background classes. In our work, we employ
the focal loss to handle classes imbalanced and hard examples.

In this paper, we propose a lightweight model to extract
discriminative features for SER from utterances with variable
length. We evaluated proposed model on the IEMOCAP and
Emo-DB corpus.

3. The Proposed Method
In this section, we describe the proposed lightweight model as
shown in Figure 1. The input features first go through the entry
flow which using a 2-D convolution layer with stride of 2, then
through the middle flow which is used to automatically extract
discriminative feature representations. Finally, these feature
representations further produce higher level features for SER
through the exit flow.

3.1. Inverted Residual

Figure 1 describes a complete architecture of proposed model.
The entry flow extracts shallow information from the features
with variable length. The middle flow containing several blocks
is used to extract richer information. Especially, the first block
with blue dashed box is different from other blocks that it does
not adopt residual connection. While the other blocks in middle
flow are all inverted residual blocks [14]. The inverted residual
block is different from conventional residual block as shown
in Fig. 2. The inverted residual block takes an input a low-
dimensional feature representation. Then through an expansion
operation by a 1× 1 convolution layer followed with Relu acti-
vation operation, the features are expanded to high dimension.
And those high-dimension features are further filtered with a
depthwise convolution for obtaining richer information. Fea-

tures are subsequently projected back to low-dimensional rep-
resentations through a linear convolution without activation op-
eration. Finally, the input and output of each inverted residual
blocks are added as the input of next block. We only perform
max pooling operation in the end of the first block with the pool-
ing size of 3× 3 and stride of 2.

Assuming taking an h×w×dm input tensor Xm, a standard
2D convolution attempts to learn filters in a 3D space with two
spatial dimensions and one channel dimension and by applying
convolutional kernel K ∈ Rk×k×dm×dn , to produce an h×w×
dn output tensor Xn. Where k × k is the filter size, and dm
and dn are the number of input channels and of output channels
respectively. The parameters number of standard convolution is
calculated by k×k×dm×dn. That of separable convolution is
k× k× dm + dm × dn. Compared with standard convolution,
the parameters number of depthwise separable convolution is
reduced by 5 times approximately.
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ReLu
3x3,ReLu
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Relu Linear
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Expansion layer Linear bottleneck
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Figure 2: The difference between residual block and inverted
residual block. (a) is residual block [18], (b) is inverted residual
block [14].

3.2. Attention Layer

In the exit flow, attention mechanism is applied after a Bi-RNN
which compresses variable length sequences produced by mid-
dle flow to a fixed-length vector. Each direction of Bi-RNN con-
tains 128 Gated Recurrent Units (GRUs)[4]. Then we can ob-
tain a sequence of 256-dimensional high-level features by con-
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catenating the outputs of two directions. The attention layer
is employed to focus on emotion relevant parts and produce
discriminative utterance-level representations for SER [9]. As
shown in (1), the weight αt is first computed by a softmax func-
tion, where ht is the Bi-RNN output, then the utterance-level
representations c are calculated by performing a weighted sum
on ht according to the weights, as shown in (2).

αt =
exp(W · ht)∑T
t=1 exp(W · ht)

(1)

c =

T∑
t=1

αtht (2)

Finally, the utterance-level representations are passed into a
fully connection layer with 64 output units, then followed with
PReLU [4] activation function and use one softmax layer to cal-
culate the probability of per emotion.

3.3. Focal Loss

The training of a deep network is based on updating the network
parameters to minimize a loss function that expresses the diver-
gence between the predictions and the ground truth labels [19].
For SER, each sentence is often annotated by multiple raters,
which are aggregated with methods such as majority vote rules.
The inconsistency of evaluations of emotional content may lead
to that emotion recognition becomes more difficult. In addi-
tion, the imbalance of categories in training data also makes
SER more difficult. A common method for addressing class im-
balance is to introduce weighting factors [4, 17]. We assigned
weights to cross entropy(CE) loss, shown in Eq.(3), the weight
wi is in inverse proportion to the sample number of the class in
training set, ŷi is the i-th element of network predictions. The
weighted CE loss as follows:

CEw = −
m∑
i=1

wiyilog(ŷi) (3)

Focal loss was proposed in [17] to address class imbalance
and hard examples by focusing on learning hard examples and
down-weight easy examples. As shown in Eq.(4), adding a fac-
tor (1 − ŷi)λ to the weighted cross entropy, where λ is hyper-
parameter adjusting the rate at which easy examples are down-
weighted. Setting λ > 0 reduces the relatives loss for well-
classified examples, putting more focus on hard and misclas-
sified examples. When λ = 0, the model is trained using only
weighted cross entropy loss. As ŷi closes to 1, the factor goes
to 0 and the loss for well-classified examples is down-weighted.

Focal loss = −
m∑
i=1

wi(1− ŷi)λyilog(ŷi) (4)

Table 1: Exemplary complete annotations of utterance of
Ses01F impro03 F025.

Annotators Annotations Label Vote proportion
C-E1 Happiness

hap 4/6
C-E2 Happiness
C-E4 Happiness; Excited
C-F1 Happiness; Excited

(a) (b)

Figure 3: (a)The distribution of vote proportion of label and (b)
samples distribution in IEMOCAP database.

4. Experiments and Results
4.1. Datasets

The IEMOCAP [20] database containing 12 hours English con-
versations is employed for performance assessment. They
are segmented and categorized into utterances with 9 emo-
tion classes. We conducted the classification task only on
the same 5 emotion classes as [4, 10, 21]. Same to the re-
ported procedure, utterances in exciting class are combined to
the happy class in evaluation, to form a four-class database
labeled with {happy, angry, sad, neutral}, each class contains
{1636, 1103, 1084, 1708} utterances respectively. Each utter-
ance is labeled by three or four annotators and the classifica-
tion label is the majority label among the annotations [22]. As
shown in Table 1, there are six annotations, four of which are
happiness, thus the vote proportion of label hap is 4/6. The
distribution of vote proportion of labels is shown in Fig.3(a).
We define the samples with vote proportion of 1 as easy sam-
ples (A), between 1 and 0.65 as medium difficulty samples
(B), and less than 0.65 as the difficulty samples as shown in
Fig.3(b). Emo-DB [23] consists of 535 utterances that dis-
played by ten professional actors, covering seven emotions
{angry, bored, disgust, fear, happy, sadness, neutral}. The
number of each class is {127, 81, 46, 69, 71, 62, 79} and all
seven emotions are used for our tasks. The sample rate of
IEMOCAP database is 16kHz. The Emo-DB database sampled
at 44.1kHz, and later downsampled to 16kHz. Because each
sample in Emo-DB has only one annotation, so we just apply
focal loss on IEMOCAP dataset. The code is available at 1.

Table 2: The validation of the effect of attention layer.

IEMOCAP Emo-DB
UA(%) WA(%)F1(%) UA(%) WA(%)F1(%)

No Attention 68.21 66.73 67.25 80.96 84.03 82.83
Attention 70.51 69.63 69.67 90.10 91.81 90.67

Table 3: Average results (%) of three kind of losses.

Losses UA WA F1-
score

Soft loss - - 69.95 69.05 69.29
Lq loss - - 68.74 68.51 68.75

Focal loss
λB = 0, λC = 0 70.51 69.63 69.67
λB = 1, λC = 2 71.72 70.37 70.37
λB = 1.5, λC = 2 71.05 70.07 70.72

1https://github.com/zhong-ying-china/A-lightweight-network-for-
SER
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Table 4: SER average preformance and parameters(MB) of different inverted residual blocks between weighted CE loss and focal loss
on IEMOCAP and Emo-DB in terms of UA(%), WA(%) F1-score(%). Note that all convolution layers without batch normalization. All
depthwise convolution layers use a depth multiplier of 1.

blocks Parameters
Weighted CE Loss Focal Loss

IEMOCAP Emo-DB IEMOCAP
UA WA F1-score UA WA F1-score UA WA F1-score

1 0.83M 70.02 68.50 69.03 87.68 89.37 88.47 70.48 69.25 69.74
2 0.85M 70.57 69.11 69.61 90.57 91.42 90.63 70.61 69.46 69.92
3 0.87M 70.18 68.49 68.92 88.08 90.64 89.25 70.40 68.73 69.06
4 0.88M 69.74 68.64 69.14 90.10 91.81 90.67 70.31 68.77 69.12
5 0.90M 70.51 69.63 69.97 88.79 90.83 89.80 71.72 70.39 70.85
6 0.92M 69.49 68.05 68.58 86.90 88.18 87.48 70.66 69.57 70.01

4.2. Experimental Settings

We used 128-dimensional log scale Mel-spectrogram (log-Mel)
as input features [4, 12, 24]. The spectrogram is extracted us-
ing 1024-point short-time Fourier transformation (STFT) with
25% overlap. Neumann et al. found that 7s long utterance con-
tains enough emotional information [12]. So if the utterance is
longer than 7s, only the middle part with the length of 7s was
calculated.

We employed TensorFlow to implement the proposed
method. Adam is used as optimizer. Learning rate was set with
0.0003 and batch size 64. Both of datasets were divided into 10
subsets randomly keeping the emotion distribution, 8 subsets
were used for training, one for validation and one for testing
(fixed test set). The experimental results are the average of 9
times cross validation. We use three metrics, Unweighted Accu-
racy (UA), Weighted Accuracy (WA) and F1-score, to evaluate
proposed method.

4.3. Results and Discussions

In our first set of experiments, we evaluate the effect of atten-
tion layer in Exit Flow (Fig.1) using IEMOCAP and Emo-DB
datasets. The system adapted weighted CE loss (Eq.3) for train-
ing. Table 2 shows the effect of attention mechanism. No Atten-
tion in Table 2 indicates that the outputs of Bi-RNN are fed into
fully connection layer directly but not pass the attention layer.

Then, we conducted experiments on IEMOCAP adopting
focal loss (Eq.4) and comparing with two kinds of losses[19].
For easy samples (A), λ was set with 0, denoted as λA = 0
(the loss of easy samples was calculated by Eq.3). λB and λC
denote the values of λ for medium difficulty samples (B) and dif-
ficulty samples (C). Table 3 shows that when λB = 1, λC = 2,
UA, WA and F1-score can achieve the best performance. λB =
0, λC = 0 means that the model was trained by using weighted
CE loss. When λB was increased to 1.5 and λC remained 2,
the performance decreases slightly. The medium difficulty sam-
ples accounts for nearly 64% of training data. So increasing
λB slight means that it will reduce the contribution of difficulty
samples relatively. The followed experiments all adopted the
settings of λB = 1 and λC = 2.

Followed, we explored the performance of the system with
various number of inverted residual blocks. As shown in ta-
ble 4, the model achieves the best performance on IEMOCAP
when the number of blocks is 5, and on Emo-DB when the num-
ber of blocks is 4. Using focal loss, the performance of model
increased by 1.7%, 1.08% and 1.3% respectively for UA, WA
and F1-score compared with weighted loss (with blocks are 5).
It further proves that focal loss can facilitate the generalization

of network. Although the network become deeper, the amount
of parameters doesn’t increase obviously.

Table 5: Comparions of model size and performance in term of
UA with other systems on IEMOCAP and Emo-DB.

Approaches Para IEMOCAP Emo-DB

3D-ACRNN[9] 323.46M 64.74% 82.82%
DRN [11] 9.9M 67.4% -
BCRNN[10] 4.34M 61.9% 79.7%
Proposed Model 0.9M 71.72% 90.1%

Finally, we compared our system with several baseline on
IEMOCAP and Emo-DB datasets. As shown in table 5, the pro-
posed model has achieved significant improvement comparing
to state-of-the-art models with their reported results especially
on Emo-DB dataset. 3D-ACRNN has the largest number of
model parameters which are almost 32 times of DRN and 73
times of the BCRNN. Among the compared models, BCRNN
has the least number of model parameters, however, its model
size is almost 5 times of our proposed model. Meanwhile, our
proposed model achieves better performance with only fewer
parameters.

5. Conclusions
To facilitate the SER application to real-time system, we pro-
posed a lightweight model based on separable convolution net-
work and inverted residuals. By employing attention layer, the
model can focus on the parts of emotion relevant. The model
also use focal loss to address the problem of class imbalance
and difficult samples, and to help the network focus on learning
hard examples. IEMOCAP and Emo-DB databases are used to
evaluate the performance of the model in terms of UA, WA and
F1-score. Results indicate that our proposed model can yield
better results compared with state-of-the-art models with fewer
parameters.
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