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Abstract

We revisit the source image estimation problem from blind
source separation (BSS). We generalize the traditional min-
imum distortion principle to maximum likelihood estimation
with a model for the residual spectrograms. Because residual
spectrograms typically contain other sources, we propose to use
a mixed-norm model that lets us finely tune sparsity in time
and frequency. We propose to carry out the minimization of the
mixed-norm via majorization-minimization optimization, lead-
ing to an iteratively reweighted least-squares algorithm. The
algorithm balances well efficiency and ease of implementa-
tion. We assess the performance of the proposed method as
applied to two well-known determined BSS and one joint BSS-
dereverberation algorithms. We find out that it is possible to
tune the parameters to improve separation by up to 2dB, with
no increase in distortion, and at little computational cost. The
method thus provides a cheap and easy way to boost the perfor-
mance of blind source separation.

Index Terms: blind source separation, scale ambiguity, mini-
mal distortion, sparsity inducing norms, MM algorithm

1. Introduction

Blind source separation (BSS) conveniently allows to separate
a mixture signal into its constitutional components without the
need for prior information [1]. A pioneering method of BSS is
independent component analysis (ICA) that only requires that
the signal components be statistically independent and non-
Gaussian [2]. In its canonical form, ICA tackles determined
linear mixtures where the number of components is the same
as that of sensors. In this case, the separation task boils down
to finding a square demixing matrix making the output compo-
nents independent. The determined BSS problem suffers from
two inherent ambiguities. First, any permutation of the sources
in the output is equally acceptable. Second, the sources may
be scaled arbitrarily. The first problem is particularly problem-
atic in frequency-domain BSS (FD-BSS) [3], where sources ex-
tracted at each frequency must be aligned. This can be done
via clustering [4], or by considering the joint distribution over
frequencies as in independent vector analysis (IVA) [5, 6].
Relatively less attention has been given to the scale ambigu-
ity problem. For FD-BSS on acoustic mixtures, the ambiguity is
equivalent to an arbitrary filtering of sources. Without a correc-
tion step, separated sources typically do not sound natural at all.
This can be addressed by estimating source images, that is the
source signal as perceived at the microphone locations. There
has been traditionally two ways of doing it. First, the so-called
projection back (PB) method makes use of the linearity of de-
termined BSS [7]. It relies on the observation that the columns
of the inverse of the demixing matrix are steering vectors for the
sources. This method may be unstable if the demixing matrix
is poorly conditioned, which is not frequent, but may happen
for some algorithms. The second method applies the minimal
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distortion principle (MDP) to adjust the scale compared to the
input microphone signal. Exploiting the independence of the
other signals, it finds the filter minimizing the squared distance
between the separated source and the input signal. From a max-
imum likelihood point of view, this method assumes a Gaus-
sian distribution of the residual when computing the distortion.
However, the residual is in fact the sum of the other sources
and background noise. Due to the non-Gaussianity of sources,
it is unlikely to be Gaussian, leading to a sub-optimal choice
for the scaling filter. For example, residual sources may have
some very large components. A squared norm will try to reduce
them, possibly at the cost of the target source. For a detailed
comparison and analysis of both methods, see [8].

In this paper, we propose the generalized minimal distortion
principle (GMDP) that uses the maximum likelihood estimator
(MLE) for the image sources. We futher propose to instantiate
GMDP based on sparsity promoting mixed norms. The intu-
ition for using such a measure of distortion is that we want to
allow the residual from minimal distortion to have some large
entries. The use of £,-norms, and the ¢;-norm in particular, for
this purpose has been popularized by the LASSO algorithm [9]
and the compressed sensing literature [10]. Another way to un-
derstand the use of such norms is via a generative model of
the residual and maximum likelihood estimation. For example,
the ¢1 norm corresponds to a Laplace model. What we pro-
pose is to penalize the residual between the separated source
and the reference input signal using a mixed norm ¢, 4, for
0 < p < ¢ < 2. The mixed norm allows to promote sparsity at
different rates across time and mixtures (i.e. time and frequency
for audio signals). Unlike the ¢3-norm, there is no closed-form
solution for the mixed norm minimization. Instead we rely
on majorization-minimization (MM) whereas a surrogate func-
tion dominating the objective is repeatedly minimized [11]. We
construct the surrogate function from an inequality previously
used in the context of sound field decomposition [12]. The fi-
nal algorithm falls in the family of iteratively reweighted least-
squares (IRLS), that has been heavily investigated in the context
of sparse regression [13, 14]. We validate the proposed GMDP
via large numerical simulations of determined speech separa-
tion. We investigate the performance for several BSS algo-
rithms: AuxIVA [15], ILRMA [16], and joint BSS and derever-
beration ILRMA-T [17]. We sweep values of 0 < p < g < 2
for different number of sources and find that our approach out-
performs both MDP and PB in terms of standard BSS metrics.
The code for the experiments is shared athttps://github.
com/fakufaku/2020_interspeech_gdmp.

The rest of this paper is as follows. Section 2 covers the
conventional BSS scaling strategies. Section 3 describes the
proposed method. The result of numerical experiments is shown
in Section 5.
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2. Background

The notation in this paper is as follows. We use lower and upper
case bold letters for vectors and matrices, respectively. Further-
more, AT and A" denote the transpose and conjugate trans-
pose of matrix A, respectively. The Euclidean norm of vector
v is ||v|| = (v"w)Y/2 The diagonal matrix with v on its di-
agonal is denoted diag(v). Unless specified otherwise, indices
k, m, f, and n are for source, sensor, frequency, and time, re-
spectively. They always take the ranges from the corresponding
capital letter, i.e., K, M, F', and N, respectively.

We consider FD-BSS with K sources and M sensors in the
short time Fourier transform (STFT) domain [18]. The sensor
inputs are described by the linear mixing model

K

Tmfn = Z hmkfskfn + bmfnv
k=1

ey

where Zyfn, Skrn € C are the mth sensor and kth source sig-
nals, respectively at frequency f and frame n, and hpy € C
is the transfer function between the two. The term by, fy, Op-
tionally encompasses extra background noise and model mis-
match. We can conveniently group the sensor signals in the
vector fn = [Tifn,--- ,ﬂchn]T, and the sources similarly
in sy, and by, respectively. Defining the channel matrix as
H; ¢ CM*¥ such that (Hf)mr = hmry, (1) can be written
in the compact form

vfn. (@)

Under this model, BSS algorithms may at best attempt to re-
cover a source vector estimate y ¢, such that there is a mixing
matrix Ay € CM** and

@n = Hfspn + bpn,

vfn. 3

The scale ambiguity is clear since for any non-singular diagonal
matrix D, Ay D! and Dyj,, form an equally valid solution.
To avoid this scaling ambiguity, the source images are sought
instead. These are the sources as measured at a sensor location,
e.g. the kth source at the mth sensor is Smkfn = hmkfSkfn.
When A is available, then from its kth column ax ¢, the source
images of the kth source can be obtained

Tin ~ AfYsn,

“

so that ¢y, ~ Y, Ysn. Unfortunately, Ay is typically not
known and must also be estimated.

Ykfn = QfnYkfn,

2.1. Projection Back

The so-called projection back technique is applicable when the
number of sources is the same as that of sensors, i.e. M =
K, [7], and bysn = 01in (1). In this case, the demixing is
typically done by estimating a square demixing matrix Wy &

CMXM 56 that
Yo = Wizpn, Vf,n. ©)
In that case, it is clear that (3) holds with equality with Ay =
Wf_ . Thus, the estimated source image is
Urn = Aseryirn = Wi ' exisn. (6)

where ey, is the ith column of the identity matrix. This method
is widely used in practice and works reasonably well, as long
as Wy is well-conditioned. This is usually the case as most
BSS algorithms either impose its orthogonality, e.g., [19], or
penalize it with a log-determinant term, e.g., [15].
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2.2. Minimal Distortion Principle

In contrast, MDP finds the mixing weights that minimize the
sum of squared differences between the separated source and
the microphone inputs [20, 21], i.e., Yfn = QkfYkfn, With

ay; = argmin E||@f, — ayppn || @)
aeCM

While derived originally from a different perspective, this

source image estimator is optimal in the maximum likelihood

sense when sources are uncorrelated and the background noise

is Gaussian. Under the uncorrelation assumption, one can show,

Ell@sn — ayisnll® = Ellhksskin — ayrsall” + const., (8)

where hyy is the kth column of Hy. Thus, (7) is indeed the
MLE of ay if by, s is Gaussian. The MDP can be shown to be
equivalent to PB under the uncorrelation assumption [8]. How-
ever, it is more stable and can deal with K # M. In practice,
however, both assumptions for its optimality are routinely vio-
lated. In multivariate source models, such as IVA, uncorrelation
is not required at all frequencies. In addition, the background is
typically not Gaussian. We address these limitations in the next
section.

3. Generalized Minimal Distortion
Principle

Consider the residual signal, where the scaling factor a,ky is
assumed known such that Ak £ Sk fn = @mkfYkfn, then

emfn = Tmfn — QmkfYkfn = thkfszfn +bmn- 9)
£k

In other words, for the correct scaling factor, the residual is
identical to the mixing model (1) with the kth source removed.
Note that sources are typically assumed to have non-Gaussian
distributions. If their number is large, the central limit theorem
may be invoked to justify Gaussianity of e,, .. However, the
typical number of sources in practice is small, e.g. two to four.
In this case, the residual is also expected to be non-Gaussian.

We propose a generalized minimal distortion principle
(GMDP) with a tunable error model. To allow modelling of
inter-frequency and inter-frame dependencies, we consider the
residual spectrograms

E,.k(z) = X, — diag(2)Yx,

where (Xm)fn = Tmfn, (Yk)fn
21y -, zF]T. Then, the MLE of z,,,x is

{Bmkbois = ~log pe ({Bue(zm) )il )

m=1,...,M, (10)

and z

Yk fn,

arg min
21,...,21 ECF
where p. is the probability density function corresponding to
the chosen error model. Note that Zmi = [Gmk1, - - - » Gmkr]
While there are lots of possible choices for the error func-
tion, inspired by the success of spherical contrast functions in
IVA [15], we propose to use p. such that

M
—logpe({Em}m=1) = Y _ | Emlbq +const, (1)
m=1

where the mixed ¢, q-norm is defined as

(12)

[Ellpg = { D | D lesnl?
n \ f
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Figure 1: Average SDR and SIR performance of GMDP. Bright and dark colors indicate high and low performance, respectively.

In Laplace AuxIVA [15], an ¢; 2-norm is used with the ef-
fect of promoting group sparsity in the frames. That is, ac-
tive frames are sparse, but within an active frame, frequencies
are not sparse. Using an ¢, 4-norm, it is possible to optimize
the desired sparsity of both frames, and frequency components.
This makes sense for speech and music signals that are typically
somewhat sparse in both due to harmonics and non-stationarity.

4. Optimization with MM Algorithm

The scaling factor to obtain the source images under the pro-
posed GMDP are

P

Zpp = argmin || Emni(2)||5,q-

zeCF

(13)

Unlike the MDP, there is unfortunately no closed form solution
for this problem. Nevertheless, it can be efficiently tackled by
an IRLS scheme derived using the MM technique [11].

For the optimization of an objective (@), the MM tech-
nique introduces a surrogate Q(6, 8) such that

Q(6,6) = f(6), and Q(6,6) > [(0),
Then, the sequence of iterates

0; = argmin Q(6,0:-1), t
0

v0,6. (14

1,...,T, (15

monotonically decreases the cost function since,
f(01-1) = Q(O:-1,0:-1) > min Q(6,6:-1) > f(6r).

To construct the surrogate, we use the following inequality,

q
2r§7

ri < r® +const, 0<q<2, (16)

q
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that is derived from an inequality for super-Gaussian
sources [24] or from concave-convex arguments [12]. For val-
ues of 0 < p < ¢ < 2, by applying (16) twice, we have

QE; E)=> wi(E)leml’ +C > ||E|5,, (7
n, f

where C'is a constant and with weights

-3

-1
r )
win(B)=p [ 2| D legnl” [r
fr=1
R (13)
Equality holds for E = E.
Finally, given the current iterate z;, the next iterate is ob-

tained by minimizing Q(E .,k (2) ; Emk(2t)), ie.,

D on Win(Z)TpnYin

S wpn (@) [Ugnl? (19

Zt+1 <—

where wy (z) is short for wsp (Emk(2)).

5. Experiments
5.1. Setup

We use the pyroomacoustics package to simulate a hun-
dred random rooms with reverberation time (7%0) between
60 ms and 500 ms [25]. The microphone array is circular with
diameter chosen so that neighboring elements are 2 cm apart,
and is placed at random in the room. The sources are placed at
random but so that they fall within [di¢, derie + 1 m] from the
array. Here, deie = 0.0574/V/Tso m is the critical distance,



Table 1: Average performance of different algorithms. SDR/SIR refer to SI-SDR/SI-SIR [22] for AuxIVA and ILRMA, and to bss_eval’s
SDR/SIR [23] for ILRMA-T. This is due to the latter using the anechoic signals as reference.

PB MDP GMDP/SDR GMDP/SIR ~ GMDP/SIR-10 GMDP/SDR-F
Algo. Mics  SDR SIR  SDR SIR  SDR SIR  SDR SIR  SDR SIR  SDR SIR
AuxIVA [15] 2 972 2278 950 2216 999 2394 951 2504 951 25.04 995 23.49
3 601 1792 585 1753 643 1934 592 2055 592 2055 6.33 18.63
4 -0.71 996 -0.72 978 -0.62 10.14 -0.72 1045 -0.72 1045 -0.68 10.36
ILRMA [16] 2 706 2155 736 2019 791 2094 746 2196 746 2196 7.84 20.63
3 514 1791 525 1680 5.74 18.08 527 1899 527 1899 5.63 17.49
4 -4.05 8.44 -324 796 -3.22 8.06 -3.22 811 -3.22 8.11 -3.41 8.48
ILRMA-T [17] 2 599 1002 587 9.84 623 1026 6.09 1039 6.14 1038  6.21 10.28
3 444 8.00 435 784 494 8.62 4.66 8.81 4381 877 494 8.64
4 032 337 0.07 332 1.26 4.19  0.19 456 1.23 422 1.18 3.88

Table 2: Best parameters for the proposed algorithm.

Criteria SDR SIR-10 SDR-F
Algo. Mics P q N P q N P q N
AuxIVA 2 08 19 4 04 038 9 1.1 1.7 4
3 07 16 5 03 1.0 8 1.1 1.7 4
4 14 1.8 3 1.1 15 4 1.1 1.7 4
ILRMA 2 10 20 3 05 14 6 13 19 3
3 09 16 4 05 09 8 13 19 3
4 18 20 3 1.7 20 3 13 19 3
ILRMA-T 2 06 1.5 5 05 08 10 04 15 6
3 04 16 6 03 09 10 04 15 6
4 01 1.7 8 01 1.1 10 04 15 6

with V' being the volume of the room [26]. The source signals
are speech utterances from the CMU Arctic database [27, 28].
We evaluate the effectiveness of GMDP on three deter-
mined BSS algorithms (i.e. same number of sources and mi-
crophones): AuxIVA [15], IVA with simple power based source
model, ILRMA [16], IVA with non-negative low-rank model
ILRMA-T [17], joint BSS and dereverberation algorithm with
non-negative low-rank source model. Then, the source image
are further estimated with PB [7], MDP [20], and the pro-
posed GMDP. For GMDP, the values of p and ¢ are further
sweeped in increments of 0.1 in their range so that we can
find the best parameters. AuxIVA and ILRMA are evaluated
in terms of scale invariant signal-to-distortion ratio (SI-SDR)
and signal-to-interference ratio (SI-SIR) [22] and the clean re-
verberant microphone signals are used as reference. The eval-
uation of ILRMA-T is different since it also dereverberates the
signals. We evaluate it with bss_eval [23] in terms of conven-
tional SDR and SIR, on the clean, anechoic microphone signals.
The metric from bss_eval forgives a 512 taps filter (32 ms
at 16 kHz), which accounts for the residual reverberation. For
GMDP, we run the MM algorithm for 100 iterations or until
||z¢ — ze—1]|/||zt—1]] < 0.01, whichever comes first. The ref-
erence to compute the source images is the first microphone.

5.2. Result

Fig. 1 shows the result of the parameter sweep for p and q. The
heatmaps show high and low SDR/SIR with brighter and darker
colors, respectively. We observe that general trends of SDR
and SIR are quite different. SDR is poor for small values of
p, g and generally improves going towards 2. On the contrary,
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SIR improves towards smaller values. This is expected since
SDR measures faithfulness to the reference signal while SIR
measures effectiveness of separation.

In Table 1, we compare the performance of PB and MDP to
that of GMDP. Since a balance between SDR and SIR needs to
be found, we compare a few strategies for picking the best p and
g. We first note that the proposed method performs better for all
strategies. GMDP/SDR chooses p and ¢q yielding the highest
SDR. Under this choice, the SIR gain tends to be modest. How-
ever, from Fig. 1 we also note that the SDR changes little over a
large range of parameter values. Thus, the strategy GMDP/SIR
chooses p and ¢ yielding the largest SIR under the constraint
that the SDR is no less than that of MDP (i.e., p = ¢ = 2).
In this case, the SIR increases by about 1 dB to 2dB for most
algorithms with no decrease of SDR. Now, in some cases, espe-
cially for ILRMA-T, some parameters may lead to a large iter-
ation count of the MM algorithm. The GMDP/SIR-10 strategy
is the same as the previous one, but further limits the median
iteration count to 10. This is achieved at very little cost in ei-
ther metrics. Finally, it may be of practical interest to fix p and
g independent of the channel count. GMDP/SDR-F maximizes
the average SDR over all channel counts. While still improving
over PB and MDP in most cases, the gain is more modest and
case-by-case choice of p and g seems necessary to obtain the
best performance. This makes sense since the spectrogram error
distribution varies according to the number of residual sources.
Table 2 contains all the parameters used in this experiment and
the median number of iterations of the MM algorithm.

6. Conclusions

We proposed a new method for the estimation of source images
from the signals separated by BSS algorithms. The method gen-
eralizes the traditional minimal distortion principle to maximum
likelihood estimation with a problem specific residual spectro-
gram model. Concretely, we proposed to minimize a mixed-
norm that allows to promote sparsity at different rates in time
and frequency. The optimization is carried out by a simple MM
algorithm that is both fast and straightforward to implement.
We demonstrate the effectiveness of the method on several BSS
and joint BSS-dereverberation algorithms. We show that the
proposed method allows to improve the separation by 1dB to
2 dB without degradation in SDR and with minimal computa-
tional overhead. Finally, we point out that the proposed method
can be combined with further post-processing using beamform-
ing, as recently proposed [29].
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