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Abstract
In this paper, a novel fast time domain audio source separation
technique based on fractional delay filters with low computa-
tional complexity and small algorithmic delay is presented and
evaluated in experiments. Our goal is a Blind Source Separation
(BSS) technique, which can be applicable for the low cost and
low power devices where processing is done in real-time, e.g.
hearing aids or teleconferencing setups. The proposed approach
optimizes fractional delays implemented as IIR filters and atten-
uation factors between microphone signals to minimize cross-
talk, the principle of a fractional delay and sum beamformer.
The experiments have been carried out for offline separation
with stationary sound sources and for real-time with randomly
moving sound sources. Experimental results show that separa-
tion performance of the proposed time domain BSS technique
is competitive with State-of-the-Art (SoA) approaches but has
lower computational complexity and no system delay like in
frequency domain BSS.
Index Terms: blind source separation, time domain, binaural
room impulse responses, optimization

1. Introduction
With a rapid deployment of more sophisticated Internet Of
Things (IoT), personal and medical portable devices, such as
teleconference systems and modern hearing aids, the need of
novel fast and robust techniques for BSS algorithms is increas-
ing. Thus, the proposed approach aims to perform stereo sound
source separation with low computational complexity, with nei-
ther system delay [1, 2] and nor musical noise [3].

Previous BSS approaches mostly apply the Short Time
Fourier Transform (STFT) to the signals [4], e.g., AuxIVA [5]
and ILRMA [6, 7]. This converts the signal delay into a com-
plex valued factors in the STFT subbands.

Despite good separation of sound sources using frequency
domain (FD) BSS approaches, there are several disadvantages.
Namely, the permutation problem and the gains in the subbands
might be different, leading to a modified spectral shape - musi-
cal noise. Moreover, there is a signal delay resulting from ap-
plying an STFT. It needs the assembly of the signal into blocks,
which requires a system delay corresponding to the block size
[1, 2].

On the other hand, time domain (TD) approaches, like
TRINICON [8, 9], or approaches that use the STFT with short
blocks and more microphones [10, 11], have the advantage that
they don’t have a large blocking delay of the STFT. However,
they usually have a higher computational complexity, which
makes them hard to use on small devices with less powerful
processors in real-time.

Moreover, TRINICON and [12] are meant to do derever-
beration. This is based on the estimation of coefficients for
multiple FIR filters, which causes an increase in computation

time. Even though [12] is meant to be the time domain BSS
algorithm, unmixing FIR filters here are estimated based on the
AuxIVA [5] approach in the frequency domain. Hence, separa-
tion performance depends on the speed of the unmixing matrix
update, which can lead to utilization of outdated information.

Conventional BSS algorithms are based on estimation of
the FIR filter coefficients for sound source separation using only
integer signal delay. As a result, without data pre-processing,
commonly used Gradient Descend optimization might have gra-
dient equals to zero or infinity resulting in degradation of sep-
aration performance. Hence, to speed up our separation algo-
rithm as much as possible to be able to implement it on a low
power hardware, we are not focused on dereverberation and
data pre-processing. Moreover, to avoid the problems associ-
ated with frequency domain approaches, such as system delays
and musical noise, we use a time domain stereo source sepa-
ration scheme. Thus, assigned constraints require exploration
of a new separation algorithm together with cost function and
optimization method. The proposed low-latency time domain
BSS method formulation together with evaluation are presented
in the following sections.

2. Proposed approach
2.1. Formulation of the proposed Time Domain BSS

In the proposed approach, instead of using FIR filters, we em-
ploy IIR filters, which are implemented as fractional delay all-
pass filters [13, 14], with attenuation factors. This can be seen
as a sum or adaptive beamformer [15, 16]. The IIR delay filter
implementation has the advantage that each such filter has only
two coefficients to be optimized, the fractional delay and the at-
tenuation. As written above, to achieve small algorithmic delay,
we don’t do a dereverberation either, we focus on the crosstalk
minimization instead. In effect, we model the Relative Transfer
Function between the microphones by an attenuation and a pure
fractional delay [17].

In this paper, we assume a mixture recording from two
sound sources (S0 and S1) made with two microphones (M0

and M1). In order to avoid the need for modeling of non-causal
impulse responses, the sound sources have to be in different
half-planes of the microphone pair.

Instead of the commonly used STFT, we use the z-
transform for the mathematical derivation, because it does not
need a decomposition of the signal into blocks, with its associ-
ated delay. This makes the mathematical derivation applicable
for a time domain implementation with no signal delay. Thus,
we use capital letter to denote z-transform domain signals.

Let us define s0(n) and s1(n) as our two time domain
sound signals, and their z-transforms as S0(z) and S1(z). The
two microphone signals are m0(n) and m1(n), and their z-
transforms are M0(z) and M1(z) (Figure 1).
The Room Impulse Responses (RIRs) from the i’s source to
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the j’s microphone are hi,j(n), and their z-transform Hi,j(z).
Thus, our convolutive mixing system can be described in the
z-domain as[

M0(z)
M1(z)

]
=

[
H0,0(z) H1,0(z)
H0,1(z) H1,1(z)

]
·
[
S0(z)
S1(z)

]
. (1)

In simplified matrix multiplication we can rewrite Equation (1)
as

M(z) = H(z) · S(z). (2)

For an ideal sound source separation we would need to invert
the mixing matrix H(z). Hence, our sound sources could be
calculated as

S(z) = H−1(z) ·M(z)⇒[
S0(z)
S1(z)

]
=

[
H1,1(z) −H1,0(z)
−H0,1(z) H0,0(z)

]
· 1

det(H(z))
·
[
M0(z)
M1(z)

]
.

(3)
Since det(H(z)) and diagonal elements of the inverse matrix
are linear filters, which do not contribute to the unmixing, we
can neglect them for the separation, and bring them to the left
side of eq. (3). This results in[

H−1
1,1(z) 0

0 H−1
0,0(z)

]
·
[
S0(z)
S1(z)

]
· det(H(z)) =

=

[
1 −H−1

1,1(z) ·H1,0(z)

−H−1
0,0(z) ·H0,1(z) 1

]
·
[
M0(z)
M1(z)

]
,

(4)
whereH−1

1,1(z)·H1,0(z) andH−1
0,0(z)·H0,1(z) are now Relative

Transfer Functions.
Next, we approximate these Relative Transfer Functions by IIR
filters using fractional delays di and attenuation factors ai,

H−1
i,i (z) ·Hi,j(z) ≈ ai · z−di , (5)

where i, j ∈ 0, 1.
For the fractional delays by di samples we use the fractional
delay allpass filter described in the next section (2.2).

The signal flowchart of convolutive mixing and demixing
process can be seen in Fig. 1.
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Figure 1: Signal block diagram of convolutive mixing and
demixing process.

Please note, since we are not focused on the dereverber-
ation, we keep the linear filter resulting from the determinant
and from the matrix diagonal Hi,i(z) on the left hand side of
eq. (4).

2.2. The fractional delay allpass filter

In order to implement Relative Transfer Functions (eq. 5), we
use the IIR fractional delay allpass filter [13] with a maximally
flat group delay response. As a result we obtain the filter out of
a single fractional delay coefficient, needed for sufficient cross-
talk cancellation.

We use following equations to obtain the coefficients for
our fractional delay allpass filter, for a fractional delay τ = di.
Its transfer function in the z-domain is A(z), with

A(z) =
z−LD( 1

z
)

D(z)
, where D(z) is of order L = dτe,

defined as follows:

D(z) = 1 +

L∑
n=1

d(n)z−n.

The filter d(n) is generated as:

d(0) = 1, d(n+ 1) = d(n) · (L− n)(L− n− τ)
(n+ 1)(n+ 1 + τ)

,

for 0 ≤ n ≤ (L− 1).
As a next step, we propose a fast analogue of mutual infor-

mation calculation as an objective function.

2.3. Objective function

The most used and conventional objective functions in BSS
theory are Mutual Information and the Kullback-Leibler Diver-
gence (KLD). The biggest drawback of these approaches is the
computational complexity. Thereby, there is a need to calcu-
late signals probability distributions and joint entropy, which
are computationally complex and time costly. Thus, in this re-
search, we propose a new fast objective function, which is de-
rived from the Kullback-Leibler Divergence.

The conventional KLD is defined as follows,

DKL(K||Q) =
∑
n

K(n) log

(
K(n)

Q(n)

)
, (6)

where K(n) and Q(n) are probability distributions of micro-
phones signals, and n runs over the discrete distributions. In
order to make the computation faster, we avoid computing his-
tograms. Instead of the histogram we use the normalized mag-
nitude of the time domain signal itself,

Pi(n) =
|s′i(n)|
‖s′i‖1

, (7)

where s′i is the unmixed time domain signal, i - the channel
number and n now is the sample index. Notice, that Pi(n) has
similar properties with that of a probability, namely:

1. Pi(n) ≥ 0, ∀n.
2.
∑∞

n=0 Pi(n) = 1.
with i = 0, 1. Instead of using the KLD directly, we turn our
objective function into a symmetric function by using the sum
DKL(K||Q)+DKL(Q||K), since this makes separation more
stable between the two channels. Hence, our resulting objective
function D(P0, P1) is:

D(P0, P1) =
∑
n

[
P0(n) log

(
P0(n)

P1(n)

)
+

+P1(n) log

(
P1(n)

P0(n)

)]
.

(8)

In order to apply minimization instead of maximization, the
negative value of D(P0, P1) has to be taken.

A comparative study of the proposed cost function together
with conventional ones has shown the similarities of the sepa-
ration performance except the computational time. Where our
proposed cost function works remarkably faster. However, this
comparison is out of the scope of this paper.
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Algorithm 1 Optimization algorithm

1: procedure OPTIMIZE FILTERS COEFFICIENTS
Input: X # Signal to be separated
Input: alpha = 0.8 # Smoothness factor
Input: num iter = 30 # Number of optimization itera-
tions
Output: coeffs # Filters coefficients

2: INITIALIZATION
3: # Weights for random search
4: coeffweights = [0.1, 0.1, 1.0, 1.0]*alpha
5: # Initial guess for separation coefficients
6: coeffs = [1.0, 1.0, 1.0, 1.0]
7: # Calculate objective value
8: negabskl 0 = negabskl(coeffs, X)
9: OPTIMIZATION ROUTINE

10: for i in range(num iter):
11: # Random variation of separation coefficients
12: coeffvariation=(random vector*coeffweights)
13: tmp coeffs = coeffs+coeffvariation
14: # Calculate new objective value
15: negabskl 1 = negabskl(tmp coeffs, X)
16: if negabskl 1 < negabskl 0 then
17: negabskl 0 = negabskl 1
18: coeffs = tmp coeffs

2.4. Optimization

A widespread optimization method for BSS is Gradient De-
scent. This has the advantage that it finds the ”steepest” way
to an optimum, but it requires the computation of gradients, and
gets easily stuck in local minima or is slowed down by ”narrow
valleys” of the objective function. Especially this is the case for
non-convex functions as in our scenario with not pre-processed
signals. Better results can be achieved using Differential Evo-
lution (DE) [18, 19] or Genetic Algorithm Optimization (GAO)
[20, 21]. Unfortunately, DE optimization has huge processing
time, while GAO does not give good sound source separation
results without an extensive enhancement.

Hence, we came up with a modified version and combina-
tion of DE and GAO. In order to make it even more faster we
use only one solution per population and initialized our popula-
tion with reasonable values instead of random values.

Unlike pure GAO, for the population update, we use a
weight vector to model the expected variance distribution of our
coefficients. Since attenuation factors change slower than de-
lays, they get smaller variances (Algorithm 1, line 4). This leads
to a very simple yet very fast optimization algorithm, which can
also be easily applied to real-time processing, which is impor-
tant for real-time communication applications.

The algorithm starts with a fixed starting point (population)
[1.0, 1.0, 1.0, 1.0], which we found to lead to a robust conver-
gence behaviour (Algorithm 1, line 6). Then, it perturbs the cur-
rent point with a vector of uniformly distributed random num-
bers between -0.5 and +0.5 (the random direction), element-
wise multiplied with our weight vector. If this perturbed point
has a lower objective function value, we choose it as our next
current point, and so on. The simplified pseudocode of the op-
timizer is shown in Algorithm 1.

2.5. Real-Time Adaptation of AIRES

The most important change that has to be added to the offline
version to turn it into real-time is operation on a running win-

dow of past samples. Here, we assume that the sound sources
are moving continuously without significant jumps in space
(with maximum speed of 0.3m/s). This is done by saving of
N past input signal blocks as overlapping windows. The cur-
rent signal block is concatenated to the stored past input signal
blocks, and the oldest is dropped. Since we assume that the
sound sources do not change their positions significantly, the
unmixing coefficients should have only small changes. More-
over, the use of overlapping windows helps to overcome the
permutation problem and works as interpolation of unmixing
coefficients.

3. Numerical experiments
In this section, we evaluate and compare the performance of
the proposed AIRES (time domAIn fRactional dElay Separa-
tion) to that of TRINICON [8, 9] via numerical experiments for
offline and real-time scenarios. We omit a comparison with
BSS algorithms based on deep learning, since such systems are
trained for specific cases. Whereas, AIRES is adaptive BSS al-
gorithm. Moreover, in order to be consistent, TD and FD BSS
algorithms are not compared, because of the unfavorable prop-
erties of the FD algorithms (see Sec. 1).

3.1. Setup

For the simulations, the room impulse response simulator based
on the image model technique [22] was used to generate room
impulse responses. The room size has been chosen to be
[7 × 5 × 3]m. The microphones were positioned in the mid-
dle of the room with displacement of 0.05m. In the simula-
tions, speech signals from the TIMIT data-set [23] (male and
female) with sampling frequency of 16kHz have been used. In
each single simulation, one pair of speech signals was randomly
chosen from the whole TIMIT data-set and convolved with the
simulated RIRs. In both testing scenarios, the positions of the
sound sources and the RT60 are variable and simulations are
preformed for ten pairs of speech signals. In the real-time sce-
nario block processing has been performed to blocks of size 512
samples and a window length of 3 blocks.
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Figure 2: Signal-to-Interference Ratio (SIR) and Signal-to-
Distortion Ratio (SDR) of the offline AIRES and TRINICON
BSS approaches applied to simulated data (Distance =
1.5[m]).

1. Offline setup: For each pair of signals, the simulation
has been performed at 50 random angle positions and 8 different
distances of the sound sources relatively to microphones (polar
coordinate system), and for 9 reverberation times (RT60). Thus,
in total - 4000 simulations per RT60.

2. Online setup: Here, the sound sources movement is im-
plemented randomly with a delay of 512 samples, and the mean
moving speed - 0.2m/s. The simulations have been repeated
50 times per speech pair. Thus, in total - 500 simulations per
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Figure 3: Box-plots for the Signal-to-Interference Ratio (SIR, left) and Signal-to-Distortion Ratio (SDR, right) of the offline AIRES and
TRINICON BSS approaches applied to simulated data (RT60 = 0.1[s]).
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Figure 4: Box-plots for the Signal-to-Interference Ratio (SIR, left) and Signal-to-Distortion Ratio (SDR, right) of the online AIRES and
TRINICON BSS approaches applied to simulated data.

AIRES TRINICON Signal length
Offline 0.07s 14.55s 120s
Online 0.00097s 0.00249s 512 samples

Table 1: Comparison of average computation time.

RT60 ∈ [0.05, ..., 3]s. Moreover, for a relative comparison, in
our experiments we used the same number of separation itera-
tions per data block (2 iterations) for each BSS algorithm.

3.2. Results

We evaluate the separated signals in terms of Signal-to-
Distortion ratio (SDR) and Signal-to-Interference ratio (SIR)
as defined in [24]. These metrics are computed using the
mir eval toolbox [25].

1. Offline setup: Here, one may assume the distance to
sound sources does not exceed ≈ 1.5m. This is a common
scenario for the proposed applications. Thus, the results over
RT60 for the assumed maximum distance are shown in Fig. 2.
The results for RT60 = 0.1s (as was presented for TRINICON
in [8]) for a cross comparison are shown in Fig. 3. The obtained
results show that AIRES outperforms TRINICON at RT60 =
0.1s (Fig. 3), while it is slightly behind atRT60 > 0.6s (Fig. 2).

2. Online setup: As can be observed in Fig. 4, online
AIRES outperforms online TRINICON in separation perfor-
mance at RT60 < 0.2s. Moreover, one can see that TRINI-
CON has a better SDR measure at RT60 > 0.2s, which can be
due to the fact that AIRES does not perform dereverberation.

Examination of computational complexity (Table 1) shows
superiority of AIRES. Thus, in the offline scenario AIRES
works 207 times faster then TRINICON, while in the online
scenario - 2.5 times faster. This is crucial, since we are focused

on low cost and low power devices where computational com-
plexity is constrained.

Besides this, hearing tests of separated sound sources have
shown that an SIR of about 8dB results in a good speech intel-
ligibility. Which means that for the offline scenario both BSS
algorithms fail in separation at RT60 > 1.5s, and for online
scenario at RT60 > 1s.

4. Conclusions and future work
We presented a novel approach for stereo audio source separa-
tion in the time domain. The proposed AIRES BSS technique
successfully separates reverberated sources, in offline and on-
line scenarios, with low complexity, and with fast convergence,
which is important for moving sources. A small separation dif-
ference of about 1.5dB in SIR measure at high RT60 is the
price which we have to pay in order to have faster process-
ing, which is crucial for embedded devices with low processing
power.

As the future work we are going to implement and eval-
uate proposed AIRES BSS technique on smartphone devices
and FPGA board. Besides this, the computational complexity
in terms of number of operations will be investigated.

A test program of AIRES BSS and evaluation results are
available at [26].
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