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Abstract 
This study presents a novel method for source extraction, 
referred to as the similarity-and-independence-aware 
beamformer (SIBF). The SIBF extracts the target signal using 
a rough magnitude spectrogram as the reference signal. The 
advantage of the SIBF is that it can obtain an accurate target 
signal, compared to the spectrogram generated by target-
enhancing methods such as the speech enhancement based on 
deep neural networks (DNNs). For the extraction, we extend 
the framework of the deflationary independent component 
analysis, by considering the similarity between the reference 
and extracted target, as well as the mutual independence of all 
potential sources. To solve the extraction problem by 
maximum-likelihood estimation, we introduce two source 
model types that can reflect the similarity. The experimental 
results from the CHiME3 dataset show that the target signal 
extracted by the SIBF is more accurate than the reference 
signal generated by the DNN. 
Index Terms: semiblind source separation, similarity-and-
independence-aware beamformer, deflationary independent 
component analysis, source model 

1. Introduction 
Processes of extracting the target signal from mixtures of 
multiple sources, such as denoising and speech extraction, 
play a significant role in improving speech recognition 
performance [1]. Generally, the associated methods are 
classified into nonlinear and linear. In the last decade, the 
nonlinear methods have drastically improved owing to the 
development of deep neural networks (DNNs). These methods, 
referred to as DNN-based speech enhancements (SEs), can 
generate clean speeches from noisy ones [2][3] and extract an 
utterance from overlapping speeches [4][5]. However, linear 
methods, such as the beamformer (BF), are advantageous in 
the following aspects: 
1. Avoiding nonlinear distortions, such as musical noises 

and spectral distortions [6][7]. 
2. Improving the quality of the extracted sound by 

increasing the number of microphones [8][9]. 
3. Estimating proper phases and scales of the extracted 

sound using designated techniques, such as rescaling in 
the independent component analysis (ICA) [10][11]. 

To incorporate the features of both the linear and 
nonlinear methods, we develop a new BF that uses the signal 
generated by any target-enhancing method (including DNN-
based SE) as a reference signal. Since the magnitude 
spectrogram is more accessible than the time-frequency mask 
and complex-valued spectrogram, this study uses it as the 
reference. It should be noted that such a reference is 
considered “rough” (or less accurate) in the following regards: 
a) It still includes some nondominant interferences (signals 

other than the target one), or can be distorted by the side 
effects of removing these interferences. 

b) It does not contain any phase information. 
The purpose of proposing the new BF is to generate an 

extracted target that is more accurate than the reference. The 
existing reference-based or DNN-based approaches, however, 
fail to meet this purpose, as discussed in Section 2. Therefore, 
a novel method, the similarity-and-independence-aware 
beamformer (SIBF), is proposed, and presented in Section 3. 

2. Related works 
The concept behind our proposed method is similar to that 

of the ICA with references (ICA-R) [12][13][14][15]. 
Particularly, the one-unit ICA-R [13] can generate a single 
signal corresponding to the reference. These approaches, 
however, do not consider the combination of the real-valued 
reference and complex-valued signals. 

The independent deeply learned matrix analysis (IDLMA) 
is developed as a framework of the semiblind source 
separation [16]. In the IDLMA, the power spectrogram of each 
source is first estimated by DNNs; each source is then 
estimated using the power spectrogram as the reference. 
However, the IDLMA requires multiple references for all 
sources, including cases that only one source is of interest. 

Other related works include combining the DNN for time-
frequency mask estimation with the existing BFs, such as the 
minimum variance distortionless response (MVDR) BF 

Table 1: Signal notations 
Signal name Spectro- 

gram 
Element Column vector of 

all channel elements 
Source 𝑺  𝑠 𝑓, 𝑡  𝒔 𝑓, 𝑡  
Observation 𝑿  𝑥 𝑓, 𝑡  𝒙 𝑓, 𝑡  
Uncorrelated 
observation 

𝑼  𝑢 𝑓, 𝑡  𝒖 𝑓, 𝑡  

Estimated source 𝒀  𝑦 𝑓, 𝑡  𝒚 𝑓, 𝑡  
Reference 𝑹 𝑟 𝑓, 𝑡  (not available) 

 
Figure 1: Workflow of the proposed beamformer. 
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[17][18] and generalized eigenvalue (GEV) BF [19][20]. 
However, these methods do not achieve our purpose because 
they cannot directly treat the magnitude spectrogram. 

3. Problem formulation of the similarity-
and-independence-aware beamformer 

The notations listed in Table 1 are used consistently 
throughout this paper to represent the time-frequency domain 
signals, with 𝑓, 𝑡, and 𝑘 denoting the indices of the frequency 
bin, frame, and channel, respectively. 

The workflow of the proposed SIBF is shown in Figure 1. 
The inputs are the multichannel observation spectrograms 
obtained from multiple microphones, and the output is an 
extracted target spectrogram. A rough magnitude spectrogram 
of the target, which can be estimated using various methods 
including the DNN-based SE, is used as the reference. 

 The workflow involves two steps: (i) estimating the rough 
magnitude spectrogram of the target, and (ii) applying the 
SIBF with the rough spectrogram as the reference. 

To realize this process, we extend the framework of the 
deflationary ICA using uncorrelations (prewhitening) [21], as 
presented in the subsequent subsections. 

3.1. Mixing and separating processes with the reference 

Figure 2 shows the modeling procedure of the mixing and 
separating processes of the SIBF. We assume that the sources 𝑺 , … ,𝑺  are mutually independent. Without loss of 
generality, 𝑺  is considered the target in this study. The 
observations 𝑿 , … ,𝑿  represent the spectrograms obtained 
from 𝑁  microphones. In the time–frequency domain, 𝑿  is 
approximated as the instantaneous mixture of the sources. We 
generate the uncorrelated observations 𝑼 , … ,𝑼  to apply the 
framework of the deflationary ICA. From the assumption of 
the sources, the estimated sources 𝒀 , … ,𝒀 , which are the 
results of the separation, are also mutually independent. 

The uncorrelation process in each frequency bin is 
expressed as (1), using the uncorrelation matrix 𝑷 𝑓 : 𝒖 𝑓, 𝑡 𝑷 𝑓 𝒙 𝑓, 𝑡   s. t.  〈𝒖 𝑓, 𝑡 𝒖 𝑓, 𝑡 〉 𝐈, (1) 
where 〈∙〉  and 𝐈  denote the averages over 𝑡  and the identity 
matrix, respectively. Similarly, the separating process is 
expressed by (2), using the separation matrix 𝑾 𝑓  to make 𝑦 𝑓, 𝑡 , …, 𝑦 𝑓, 𝑡  mutually independent. 𝒚 𝑓, 𝑡 𝑾 𝑓 𝒖 𝑓, 𝑡  𝑾 𝑓 𝑷 𝑓 𝒙 𝑓, 𝑡 . (2) 

Considering the uncorrelation, we can restrict 𝑾 𝑓  to a 
unitary matrix such that 𝑾 𝑓 𝑾 𝑓 𝐈  [21]. 

To extract only the estimated target 𝑦 𝑓, 𝑡 , we also use 𝑦 𝑓, 𝑡 𝒘 𝑓 𝒖 𝑓, 𝑡 𝒘 𝑓 𝑷 𝑓 𝒙 𝑓, 𝑡 , (3) 
where 𝒘 𝑓  is the first row vector in 𝑾 𝑓 . 

The rest of Figure 2 shows the unique points of our 
modeling procedure. The reference 𝑹 is a rough estimate of 
the target 𝑺 . To associate 𝒀  with 𝑺 , we consider the 
dependence between 𝒀  and 𝑹 as well as the independence of 
the estimated sources. Conversely, maximizing the 
independence makes 𝒀  more accurate than the reference, 
whereas maximizing the dependence only makes 𝒀  similar to 
the reference. 

Because 𝑺  is the only source of interest, we employ the 
deflationary estimation [21], i.e., one-by-one separation, to 
generate 𝒀  only. This indicates that the other estimated 
sources, 𝒀 , … ,𝒀 , are virtual (potential). 

3.2. Maximum-likelihood estimation of the target signal 

We solve the target extraction problem shown in Figure 2 by 
maximum-likelihood (ML) estimation, which is widely used 
in blind source separation (BSS) problems [16][22][23]. 

For the dependence between the estimated target and 
reference, we consider the temporally averaged negative log-
likelihood (TANLL) of both observations and reference using TANLL log𝑝 𝑹,𝑿 ,⋯ ,𝑿 , (4) 
where 𝑇  is the number of frames and 𝑝  denotes the joint 
probability density function (PDF) of its arguments. For 
simplicity, we assume that 𝑀 𝑁   and all elements in the 
same spectrogram are mutually independent. From these 
assumptions and (2), we can rewrite (4), to obtain (5) and (6). 4 〈log𝑝 𝑟 𝑓, 𝑡 ,𝒙 𝑓, 𝑡 〉  (5) 

  〈log𝑝𝑟𝑠1 𝑟 𝑓, 𝑡 , 𝑦 𝑓, 𝑡 〉 〈log𝑝 𝑦 𝑓, 𝑡 〉 2 log det 𝑾 𝑓 𝑷 𝑓 , (6) 
 

where 𝑝 , 𝑝 , and 𝑝  denote the joint PDF between 𝑟 𝑓, 𝑡  
and 𝒙 𝑓, 𝑡 , joint PDF between 𝑟 𝑓, 𝑡  and 𝑠 𝑓, 𝑡 , and PDF 
of 𝑠 𝑓, 𝑡 , respectively. We refer to 𝑝  as a source model, 
which is examined in Section 3.3. 

By minimizing (6), we can estimate the most likely 
sources. Because of the uncorrelation, the determinant of 𝑾 𝑓 𝑷 𝑓  in (6) is constant. Therefore, to estimate 𝒘 𝑓 , 
which is the extraction filter for 𝑦 𝑓, 𝑡 , we minimize only 
the first term in (6), subject to 𝒘 𝑓 𝒘 𝑓 1 as follows: 𝒘 𝑓 arg min𝒘 〈log𝑝 𝑟 𝑓, 𝑡 ,𝑦 𝑓, 𝑡 〉  (7) 

3.3. Source models 

To reflect the dependence onto the source model, we examine 
two types of PDFs: (i) the time-frequency-varying variance 
(TV) model, and (ii) bivariate spherical (BS) model. 

The TV model includes different variances in each 
frequency bin and frame. The reference 𝑟 𝑓, 𝑡  is interpreted 
as a value related to the variance. This study then uses the TV 
Gaussian model, which has widely been used in BSS problems 

 
Figure 2: Modeling procedure of the mixing and 
separating processes. The unique points of the modeling 
are (1) the dependence between 𝒀  and 𝑹 is considered, 
as well as the independence of all the estimated sources, 
and (2) only 𝒀  is actually estimated while 𝒀 , … ,𝒀  
are just virtual sources. 
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[16][23][24]. To control the influence of the reference, we 
append 𝛽 as the reference exponent: 𝑝 𝑟 𝑓, 𝑡 , 𝑦 𝑓, 𝑡 ∝ 1𝑟 𝑓, 𝑡 / exp |𝑦 𝑓, 𝑡 |𝑟 𝑓, 𝑡 . (8) 

In contrast, the BS model is a two-variable version of the 
multivariate spherical (MS) distribution [25]. MS models, 
such as the MS Laplacian model, are used in independent 
vector analysis (IVA) to avoid the permutation ambiguity 
problem because they can make all the frequency components 
dependent [25][26][27][28]. To make |𝑦 𝑓, 𝑡 |  and 𝑟 𝑓, 𝑡  
mutually dependent, we use the following BS Laplacian 
model:  𝑝 𝑟 𝑓, 𝑡 ,𝑦 𝑓, 𝑡 ∝ exp 𝛼𝑟 𝑓, 𝑡 |𝑦 𝑓, 𝑡 | , (9) 
where 𝛼, called the reference weight, controls the influence of 
the reference. To balance the scales of 𝑟 𝑓, 𝑡  and 𝑦 𝑓, 𝑡 , we 
normalize the reference such that 〈𝑟 𝑓, 𝑡 〉 1. 

3.4. Rules for estimating the extraction filter 

In this subsection, we derive the rules for estimating the filter 
for each model. 

For the TV Gaussian model, the closed-form solution is 
written as (10), because assigning (8) to (7) results in the 
problem of minimizing a weighted covariance matrix. 𝒘 𝑓 EIG 〈𝒖 𝑓, 𝑡 𝒖 𝑓, 𝑡 /𝑟 𝑓, 𝑡  〉 , (10) 
where EIG ∙  denotes the eigenvector in the row vector form 
corresponding to the minimum eigenvalue of the given matrix. 

For the BS Laplacian model, we apply iterative updating 
rules written as (11) and (12), which are based on the auxiliary 
function algorithm [29]. 𝑏 𝑓, 𝑡 ←  𝛼𝑟 𝑓, 𝑡 |𝒘 𝑓 𝒖 𝑓, 𝑡 |  (11) 𝒘 𝑓 ← EIG 〈𝒖 𝑓, 𝑡 𝒖 𝑓, 𝑡 /𝑏 𝑓, 𝑡 〉  (12) 
To derive these rules, we use the following inequation, which 
contains a positive value 𝑏 𝑓, 𝑡  called the auxiliary variable: 𝛼𝑟 𝑓, 𝑡  |𝑦 𝑓, 𝑡 | 𝛼𝑟 𝑓, 𝑡 |𝑦 𝑓, 𝑡 |2𝑏 𝑓, 𝑡 𝑏 𝑓, 𝑡2 . (13) 

In the first iteration, we use 𝑏 𝑓, 𝑡 ← 𝑟 𝑓, 𝑡  instead of 
(11) because 𝒘 𝑓  is unknown. This is equivalent to the rule 
of the TV Gaussian model (10) with 𝛽 1. 

3.5. Rescaling in postprocess 

After the filter estimation, we estimate the proper scale and 
phase of the estimated target using (3) and (14), which 
represent mapping to the specified observation signal and are 
equivalent to the projection-back or minimal distortion 
principle method [10][11]. 𝑦 𝑓, 𝑡 ← 𝑥 𝑓, 𝑡 𝑦 𝑓, 𝑡⟨|𝑦 𝑓, 𝑡 | ⟩ 𝑦 𝑓, 𝑡 , (14) 

where 𝑚 denotes the reference microphone index for rescaling. 

4. Experiments 
To verify the effectiveness of the proposed SIBF, we 
conducted several experiments using the CHiME3 dataset [30]. 
This means that we applied the SIBF to the problem of 
estimating clean speeches in noisy environments. In the 
dataset, sound data were recorded in four noisy environments 
using six microphones attached to a tablet device. Clean 
speeches were also recorded in a recording booth. 

4.1. DNN for reference estimation  

To prepare the DNN for reference estimation, we modified the 
configuration that trains the bidirectional long short-term 
memory (BLSTM) based mask estimator for GEV BF [19] to 
output the magnitude spectrogram. The network configuration, 
as shown in Figure 3, was similar to that in [19], except for the 
following aspects: 
1) Supervisory data consisted of magnitude spectrograms of 

clean speeches instead of ideal binary masks. 
2) The mean squared error (MSE) was used as the loss 

function in the training stage. 
3) The training was performed in 20 epochs. 

To estimate the reference, the observation spectrogram of 
Microphone #5 (closest to the speaker position) was used as 
the DNN input. 

4.2. Experimental setups 

To prepare the input data as a development set with various 
signal-to-noise ratios (SNRs), we artificially mixed the clean 
speeches recorded in the booth (BTH) with background (BG) 
noises. During the mixing, we applied four multipliers (0.25, 
0.5, 1.0, and 2.0) to the noises, and termed the mixed data as 
“BTH+BG 0.25” (or simply “BG 0.25”), and so on. 

In the preprocess, we converted the waveforms into 
spectrograms using the short-time Fourier transform with 1024 
points and 256 shifts. In the postprocess, we employed (14) 
with 𝑚  5, which was the index of the closest microphone. 

4.3. Best parameter sets for each source model 

To determine the best parameters for each model, we 
conducted a series of experiments using the perceptual 
evaluation of speech quality (PESQ) as the performance score. 

First, we evaluated the TV Gaussian model (8) to find the 
best reference exponent 𝛽. For cases 𝛽 = 0.5, 1, 2, 4, and 8, we 
found that the 𝛽 8 case achieved the best PESQ score, while 
the 𝛽 2  case demonstrated the worst, although only the 

  

 
Figure 4: PESQ scores of BS Laplacian model for 
reference weight 𝛼, reference, and TV Gaussian model 
(𝛽 8) (left: BTH+BG 2.0 scenario (lower SNR); and 
right: BTH+BG 0.25 scenario (higher SNR)) 
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Figure 3: Network configuration for DNN that outputs a 
magnitude spectrogram (Mag. Spec.) as the reference 
(numbers indicate the input and output dimensions.) 
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latter case strictly corresponds to the TV Gaussian distribution. 
Subsequently, we examined the BS Laplacian model (9) to 

obtain the relations between the PESQ scores and iteration 
times (1, 2, 5, and 10) for various reference weights (α = 10-2, 
1, 102, and 104). Figure 4 shows a subset of the relations: 
BG 2.0 (left) and BG 0.25 (right) scenarios, and the scores 
of the reference and TV Gaussian model (𝛽 8 only) with 
dotted and broken horizontal lines, respectively. 

In the BG 2.0 scenario, the PESQ scores were improved 
for all reference weights as the iteration time increased. 
Remarkably, a smaller weight resulted in a higher 
improvement. However, in the BG 0.25 scenario, the cases α 1 and 10  showed decreasing tendencies except for the 
first iteration. We also observed that the tendencies of the 
BG 1.0 and BG 0.5 scenarios (not shown here) were close to 
those of BG 2.0 and BG 0.25, respectively. 

From these results, we chose α 10  as the best 
parameter as it showed stably increasing tendencies. 

4.4. PESQ and SDR evaluation 

Next, we measured the signal-to-distortion ratio (SDR) and 
PESQ using the best parameter sets: 𝛽 8  for the TV 
Gaussian model and 𝛼 10  for the BS Laplacian model with 
10 iterations. To estimate the potential performance of the 
SIBF, we also attempted to use the magnitude spectrogram of 
a clean speech as the ideal reference. This was termed as the 
Oracle SIBF, whereas the use of the reference generated by 
the DNN was referred to as the NN-SIBF. To compare the 
SIBF with other methods, we also used the CHiME3-
simulated evaluation set. 

The results are shown in Table 2, which also includes 
scores of the reference and observation with Microphone #5. 
The last two rows demonstrate the scores of the CHiME4 SE 
baseline [1] and BLSTM-based MVDR [17], which were 
probably trained using a dataset similar to the one in this study. 
From this table, we confirmed the following: 
1. The NN-SIBF outperformed the references in most cases, 

except for the SDR in the BG 2.0 scenario. 
2. The BS Laplacian model outperformed the TV Gaussian 

model in the NN-SIBF, whereas both models showed 
almost identical performance in the Oracle SIBF. 

3. For the scores in the evaluation set, the NN-SIBF 
outperformed the conventional DNN-based methods [1] 
[17], despite using the same training dataset. 

5. Discussion 
In this section, we discuss the following three aspects. 

The first aspect is the effectiveness of utilizing both 
dependence and independence. This can be verified by the fact 

that the NN-SIBF outperformed the reference in most cases. 
This suggests that if we have a spectrogram generated by a 
target-enhancing method, we can obtain a more accurate target 
signal than it by using it as the reference in the SIBF. 

The second aspect is the relationship between the accuracy 
of the reference and performance of the target extraction. We 
can conclude that the more accurate reference achieves better 
target extraction performance because the Oracle SIBF scores 
were much higher than those of the NN-SIBF in all the 
experiments. In other words, inaccurate references often result 
in limited improvements, as shown in the BG 2.0 scenario in 
Table 2. However, Figure 4 indicates that even with such 
inaccurate references, the BS Laplacian model can still 
improve performance after multiple iterations if the proper 
reference weight (e.g., 𝛼  10 ) is chosen. This figure also 
suggests that the balance between dependence and 
independence should vary according to the accuracy of the 
reference, although this remains an open issue. 

The third aspect is how to further improve the target 
extraction performance. From the above discussion, there are 
at least two options. One involves improving the accuracy of 
the reference using state-of-the-art speech enhancement 
methods to generate a reference. The other involves 
improving the source models by refining the proposed 
models, such as automatic parameter tuning, as well as 
examining another source model type. 

6. Conclusions 
In this study, we proposed a novel method for target signal 
extraction, i.e., the SIBF. The method used a rough magnitude 
spectrogram of the target signal as the reference to extract the 
target signal more accurately. For this extraction, we extended 
the framework of the deflationary ICA by considering the 
similarity between the reference and extracted target signal, as 
well as the mutual independence of the potential sources. To 
solve the extraction problem by maximum-likelihood 
estimation, we developed two source model types that could 
reflect the similarity: the TV Gaussian and BS Laplacian 
models. Further, we derived corresponding rules for the 
extraction filters. 

The advantage of the SIBF lies in its ability to extract a 
more accurate target signal than the spectrogram generated by 
target-enhancing methods, such as DNN-based speech 
enhancement. We verified this through experiments using the 
CHiME3 dataset. 

Finally, the SIBF is based on the principles of the ICA, 
whereas it works as a beamformer. Therefore, we expect that 
the SIBF will further promote future research in both the 
DNN-based beamformer and ICA-based BSS fields. 

Table 2: PESQ and SDR for all methods; NN-SIBF: SIBF using the reference generated by DNN; Oracle SIBF: SIBF 
using ideal references; “ 0.25”, …, “ 2.0”: multiplier of noise in mixing speeches and noise; and Eval: CHiME3-
simulated evaluation set (best score for each scenario is bolded (Oracle SIBF is not considered in the comparison)) 

Method Source Model PESQ SDR [dB] 𝟎.𝟐𝟓 𝟎.𝟓 𝟏.𝟎 𝟐.𝟎 Eval 𝟎.𝟐𝟓 𝟎.𝟓 𝟏.𝟎 𝟐.𝟎 Eval 
NN-SIBF 
(proposed) 

TV Gaussian 3.52 3.12 2.63 2.08 2.67 18.84 14.45 8.45 1.32 15.25 
BS Laplacian 3.53 3.13 2.66 2.11 2.68 19.30 14.74 8.78 1.55 15.85 

Oracle SIBF TV Gaussian 3.58 3.21 2.80 2.39 2.75 20.62 17.03 12.25 6.54 17.99 
BS Laplacian 3.58 3.21 2.80 2.39 2.75 20.45 17.05 12.33 6.59 18.00 

Reference generated with the DNN 3.14 2.83 2.43 1.91 2.61 18.48 13.89 8.70 2.34 13.61 
Microphone #5 2.93 2.51 2.10 1.72 2.18 14.05 8.03 2.03 -3.93 7.54 
CHiME4 SE baseline (BLSTM GEV)  [1]     2.46     2.92 
Erdogan et.al. (BLSTM MVDR) [17]     2.29     15.12 
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