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Abstract 
In this paper, we present a deep neural network architecture 
comprising of both convolutional neural network (CNN) and 
recurrent neural network (RNN) layers for real-time single-
channel speech enhancement (SE). The proposed neural 
network model focuses on enhancing the noisy speech 
magnitude spectrum on a frame-by-frame process. The 
developed model is implemented on the smartphone (edge 
device), to demonstrate the real-time usability of the proposed 
method. Perceptual evaluation of speech quality (PESQ) and 
short-time objective intelligibility (STOI) test results are used 
to compare the proposed algorithm to previously published 
conventional and deep learning-based SE methods. Subjective 
ratings show the performance improvement of the proposed 
model over the other baseline SE methods. 
Index Terms: speech enhancement, neural networks, real-time, 
smartphone. 

1. Introduction 
The presence of background noise in a speech signal degrades 
the quality and intelligibility of the speech. Speech 
enhancement (SE) focusses on eliminating or suppressing the 
unwanted noise from the desired signal. SE plays a crucial role 
in many applications such as speech recognition, speech 
communication systems, and hearing aids. Several 
conventional and neural network-based SE algorithms have 
been proposed in the past decade. 

The Boll [1] approach for spectral subtraction focuses on 
the subtraction of the noise magnitude spectrum from the noisy 
speech magnitude spectrum. At the high signal to noise ratio 
(SNR) levels, statistical model-based approaches developed by 
Ephraim and Malah [2, 3] were effective in eliminating 
background noise. In [4, 5], Maximum A Posteriori (MAP) 
estimation based computationally efficient SE algorithms are 
proposed. However, such conventional SE methods are based 
on some premises and cannot be successful for non-stationary 
forms of background noise. Some of the statistical-based single-
channel SE methods also introduce speech distortion in the 
form of musical noise, especially at low SNR. 

Based on the recent progression in deep neural networks 
(DNN) for different signal processing tasks, several deep 
learning methods for single-channel SE have been developed. 
The supervised SE methods are divided into masking and 
mapping-based techniques depending on the description of the 
clean speech targets for training [6]. In [7], the ideal binary 
mask (IBM) from noisy input speech is estimated by a feed-
forward neural network. Compared to mask-based techniques, 
signal-based approximations reduce the difference between 

predicted and target gain [8].  DNN-based SE framework 
proposed in [9] predicts the clean speech log-power spectra 
(LPS) from noisy speech input LPS features. Recent 
innovations in the convolutional neural network (CNN) make 
them beneficial for SE to train the model using spectrogram 
features [10]. In [11], a fully convolutional neural network 
(FCN)-based SE is proposed with input raw audio data. 
Recurrent neural network (RNN) layers and long short-term 
memory (LSTM) layers are implemented to perform SE [12 - 
14]. A mixture of convolutional and LSTM networks [15] 
outperforms other neural networks for SE at lower SNRs. In 
general, RNN layers are much more complex than CNN layers 
as they do not have weight sharing. However, RNNs are most 
suitable for time series data, as they can be used for processing 
random input data sequences with their internal memory. 

In this paper, we propose a novel framework for real-time 
single-channel SE on edge devices, where a convolutional 
recurrent neural network (CRNN) model is trained to predict 
the clean speech magnitude spectrum. Also, the CRNN is 
computationally efficient and can be used for real-time 
processing [16]. A smartphone with an inbuilt microphone is 
used as an edge device example to capture the noisy speech data 
and perform complex computations using the proposed SE 
algorithm. The enhanced speech signal from the developed 
model implemented on the smartphone can be transmitted 
through wired or wireless earphone connection to the user [17, 
18]. The paper provides a detailed description of the real-time 
implementation on the smartphone. The proposed algorithm 
can run on any stand-alone platform such as a smartphone and 
will serve as a critical element in the signal processing or 
communication pipeline. To prove the real-time 
implementation and application of the proposed method, we 
evaluate the developed model using a variety of noise types 
(both stationary and non-stationary), a wide range of speakers, 
and SNRs. The objective evaluations and subjective test results 
conducted for the proposed CRNN based SE method 
demonstrate the operational potential of the methodology 
developed. 

2. Proposed algorithm description 
This section describes the proposed SE algorithm. Figure 1 
shows the block diagram of the proposed SE pipeline. 

2.1. Problem formulation 

We consider noisy speech 𝑦(𝑛) to be an additive mixture model 
of clean speech 𝑠(𝑛) and noise 𝑑(𝑛). 
 

𝑦(𝑛) 	= 	𝑠(𝑛) 	+ 		𝑑(𝑛)                                    (1) 
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The input noisy speech signal is transformed into the frequency 
domain by taking short-time Fourier transform (STFT). 

𝑌!(𝜆) 	= 	𝑆!(𝜆) 	+		𝐷!(𝜆)                                (2) 
 

𝑌!(𝜆), 𝑆!(𝜆), and 𝐷!(𝜆) represent the STFT of 𝑦(𝑛), 𝑠(𝑛) and 
𝑑(𝑛) respectively for the frame 𝜆 and frequency bin k. In polar 
coordinates, (2) can be written as,  
 

𝑅!(𝜆)𝑒"#!"(%) = 𝐴!(𝜆)𝑒"##"
(%) +𝐵!(𝜆)𝑒"#$"(%)     (3) 

 
Where 𝑅!(𝜆) , 𝐴!(𝜆) , 𝐵!(𝜆)  are the magnitude spectrum of 
noisy speech, clean speech, and noise respectively. 𝜃'!(𝜆) , 
𝜃("(𝜆) , 𝜃)!(𝜆)  represents the phase of noisy speech, clean 
speech, and noise respectively. 

2.2. Feature selection 

For effective neural network training, it is necessary to select 
suitable features. We consider magnitude spectrum as the input 
feature. The proposed CRNN system is trained with the noisy 
speech magnitude spectrum 𝑅!(𝜆)  as input and the clean 
speech spectrum 𝐴!(𝜆) as the output label. Hence, the proposed 
model focuses on estimating a speech spectrum 𝐴!	3 (𝜆). We 
consider the noisy phase for reconstruction. Finally, the 
estimate of clean speech for reconstruction is, 
 

𝑆!3(𝜆) = 	𝐴!	3 (𝜆) 𝑒"#!"(%)                        (4) 
 

The time domain signal output is obtained by taking Inverse Fast 
Fourier Transform (IFFT) of  𝑆!3(𝜆). 

2.3. Proposed CRNN architecture 

CNNs process the input image or matrix by performing 
convolution and pooling functions. In CNNs, a small image 

region can be compacted by a series of weighted learning filters 
(kernels) to form a convolutional layer. The kernel generates a 
feature map for every forward pass of input. Maxpooling layers 
follow the convolution layers to reduce the size or dimension of 
the feature maps. Compared to CNN, RNNs permit us to model 
sequential data since they have feedback connections. The RNN 
cell has a dynamic behavior to make use of its internal state 
memory for processing. Thus, making it very reliable for speech 
analysis. 

The proposed model is a combination of both CNN and 
RNN layers [19]. The model takes in one frame of noisy speech 
magnitude spectrum and outputs one frame of enhanced/clean 
speech magnitude spectrum. The input noisy magnitude 
spectrum is reshaped to form an image input, due to the 
presence of convolutional layers at the start.  This is then fed 
into a neural network twice as shown in Figure 2. Figure 2 
shows the block diagram representation of the proposed CRNN 
architecture. Different hidden layers such as convolutional 
layers, maxpool layers, long short-term memory (LSTM) 
layers, and fully connected (FC) layers are used to design the 
proposed model. There are 4 convolutional layers with a 
maxpool layer in between them. The first, second, third, and 
fourth convolutional layer uses 257, 129, 65, and 33 feature 
maps respectively. The feature maps gradually decrease in 
order to reduce the computational complexity and number of 
parameters, making the developed model suitable for real-time 
applications. The kernel and bias for all the convolution layers 
is given in Table 1. Followed by the convolutional layers, there 
are two LSTM layers consisting of 33 neurons each. The output 
of the LSTM layer is flattened out and the respective outputs 
from both the paths are added together before sending them to 
the FC layer. The FC hidden layer has 257 neurons and is 
followed by a linear output layer to predict the speech spectrum. 
The CRNN architecture proposed is given in Table 1. The 
specific numbers for designing the CRNN model was fixed 
after several experiments and training.  

Table 1: Architecture of the proposed CRNN model.  

Layers Kernel Bias 
Conv 2D_1 5 × 5 × 1 × 257  257 
Conv 2D_2 5 × 5 × 257 × 129  129 
Conv 2D_3 5 × 5 × 129 × 65 65 
Conv 2D_4 5 × 5 × 65 × 33  33 

LSTM 33 × 132  264 
Dense_1 1089 × 257  257 
Dense_2 257 × 257  257 

 

Figure 1: Proposed SE pipeline. 

 

 

Figure 2: Block diagram of the proposed CRNN architecture. 
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Adam optimization algorithm [20] was used with a mean 
absolute error loss function to train the model. 

Activation functions are used in each hidden layer to allow 
the network to learn complex and non-linear functional 
mapping between the input and output labels. We selected 
rectified linear unit (ReLU) as activation function because it has 
been successful in solving the vanishing gradient problem [21]. 

3. Experimental evaluation and results 

3.1. Dataset and experimental setup 

For the training and evaluation of the proposed CRNN model, 
a clean speech dataset is built from the Librivox dataset [22] of 
public audiobooks. Librivox has individual recordings in 
several languages, most of them are in English, that is read over 
10,000 audio public domain books. Overall, there are 11,350 
speakers present in the dataset. A portion of this dataset is 
considered to generate the noisy speech input features and clean 
speech labels for training the model. The noise dataset from 
Audioset and Freesound is considered [23]. Audioset is a series 
of approximately two million ten seconds sound clips made of 
YouTube videos, belonging to 600 audio classes. Finally, 150 
audio classes, 60000 noise clips from Audioset, and 10000 
noise clips from Freesound are mixed with the clean speech 
dataset considered. The resulting noisy speech audio clips are 
sampled to 16 kHz before feature extraction. A total of 100 
hours of clean speech and noisy speech constitutes the training 
set. The clean speech files are normalized, and each noise clip 
is scaled up to have one of the five SNRs (0, 10, 20, 30, 40 dB). 
We randomly pick a clip of clean speech and noise, before 
combining them together to create a noisy speech clip. Due to 
the real-time application of the proposed method, reverberation 
is added to a portion of clean speech (30 hours) [24]. The 
reverberation time (T60) is randomly drawn from 0.2 s to 0.8 s 
with a step of 0.2 s. The proposed model is trained using the 
entire training dataset and we evaluate the model once the 
training is complete using a blind validation test set made 
available in [23]. The blind test set consists of real noisy speech 
recordings with and without reverberation. Challenging non-
stationary noise cases were included in the blind set such as 
Multi-talker babble, keyboard typing, a person eating chips, etc. 
The blind test set comprises of 150 noisy speech clips. 

The audio clips are sampled at 16 kHz with a frame size of 
32ms with a 50% overlap. A 512-point STFT is computed to 
determine the input magnitude spectrum features. The first 257 
magnitude spectrum values are taken into consideration due to 
the complex conjugate property in STFT and reshaped to form 
an image of 257 × 1 × 1. The final output layer predicts the 
clean speech signal magnitude spectrum. The model is trained 
for a total of 50 epochs. 

3.2. Objective and subjective test results 

The blind test set explained in the previous section is considered 
for speech quality and intelligibility evaluations. Perceptual 
evaluation of speech quality (PESQ) [25] and short-time 
objective intelligibility (STOI) [26] scores are included in the 
paper. PESQ ranges between -0.5 and 4.5, 4.5 is for high-
quality speech. An increase in the STOI score increases the 
intelligibility. The test scores are the average of 150 audio clips 
present in the blind test set (validation data – not seen by the 
model). The proposed CRNN-based SE is compared with noisy 
speech and two baseline SE methods. Classical single 
microphone SE method i.e. log-MMSE [3] and RNN-based SE 

[27] are implemented and tested for our comparison. We also 
compare the number of parameters present in both models. 
Table 2 presents the objective test results and the proposed 
method outperforms the noisy speech and the other two SE 
approaches considered. 

In addition to the objective evaluation, we conducted the 
mean opinion score (MOS) tests on 10 subjects. 10 random 
audio clips from the objective evaluation test set are considered 
for subjective testing. The subjects were instructed to score the 
noisy speech, proposed enhanced speech, log-MMSE output, 
and RNN SE output speech. The scoring is in the range 1 to 5 
and the instructions are based on the following criteria: 5 for 
excellent speech quality and an imperceptible degree of 
distortion. 4 for decent speech quality with minimum distortion. 
3 for providing enough degree of distortion for equivalent 
quality of speech. 2 for the low quality of speech with plenty of 
residual noises and distortions. 1 with the lowest speech content 
and an unacceptable level of distortion. Table 3 displays the 
average subjective test results and the findings indicate the 
usefulness of the proposed SE method. A comprehensive 
description of the scoring procedure is explained in [28]. 

Table 2: Comparison of PESQ and STOI scores.  

Method Number of 
Parameters 

PESQ STOI 
(%) 

Noisy - 2.18 89.1 

logMMSE [3] - 2.29 85.4 

RNN [27] 61.2 K 2.42 89.5 

Proposed 2.58 M 2.57 91.3 

Table 3: Subjective MOS test results. 

Method MOS 
Noisy 2.45 

logMMSE [3] 2.93 

RNN [27]  3.15 

Proposed 3.87 

Table 4: CRNN vs CNN.  

Method Number of 
Parameters 

PESQ STOI 
(%) 

CNN 2.54 M 2.4 90 

Proposed 2.58 M 2.57 91.3 

 

3.3. Comparison of CRNN with CNN  

In this experiment, we compare the performance of CRNNs 
with CNNs. Two different models are evaluated and compared 
using the magnitude spectrum input features. We propose a 
baseline CNN model, wherein the entire architecture is the 
same as that of the proposed CRNN model without the presence 
of the LSTM layers. The training data explained in the previous 
subsection remained the same for training the CNN model. 
Table 4 shows the PESQ and STOI scores of both the CRNN 
and CNN models. The same blind test set is used for evaluating 
and comparing both models. The presence of additional gates 
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and the capability to use time-series information in the LSTM 
layer results in better noise suppression. 

4. Real-time implementation 
The proposed CRNN based SE algorithm is implemented on an 
iPhone. However, due to the real-time usability of the proposed 
application, it can be implemented on any processing platform. 
The microphone on the smartphone captures the input noisy 
speech at a 48 kHz sampling rate and then we downsample it to 
16 kHz with the help of a low-pass filter and a decimation factor 
of 3. The input frame size is set to be 32ms. Figure 3 shows the 
screenshot of the proposed method implemented on the iPhone. 
By pressing the SE button present in the figure, the 
implemented model is initialized. The application simply 
replays the audio on the smartphone without processing when 
the ON/OFF switch is in off mode. By clicking on the ON/OFF 
switch button, the CRNN based SE module will process the 
input audio stream and suppress the background noise. A slider 
is provided to the smartphone user to control the amount of 
output volume. 

To run deep learning models on the smartphone, 
TensorFlow Lite offers a C/C++ API [29]. The proposed model 
is compressed and deployed on the smartphone using libraries 
such as the TensorFlow Lite converter and interpreter. The 
trained weights are frozen, thus eliminating backpropagation, 
training, and regularization layers. The final frozen model with 
the weights is saved into a file that includes a .pb extension. To 
test the computational complexity of the proposed application, 
an iPhone 11 smartphone is considered. For these appliances, 
the audio latency for the iPhone 11 was 12-14ms. The 
processing time for the input frame of 32ms is 0.705ms. Since 
the processing time is lower than the length of the input frame, 
the proposed SE application works smoothly at low audio 
latency on the smartphone. Based on our measurements, the 
application runs on a fully charged iPhone 11 with a 3046 mAh 
battery for approximately 5 hours. 

Figure 4 shows the CPU, memory, and battery usage of the 
proposed SE application running on the iOS smartphone used. 
The CPU usage of the app is 28% and the maximum memory 
consumption after the processing is turned on is 75.4 MB. The 
obtained frozen model with the trained weights is of size 11.5 
MB, meaning the actual memory consumption of the SE 
application is around 65 MB. The smartphones present in the 

market usually have 12-16 GB memory; thus, the proposed 
application uses only 0.5 % of the entire smartphone memory. 

5. Conclusions 
A single channel CRNN-based SE application is proposed. The 
proposed application operates in real-time on an edge device. 
The developed algorithm is computationally efficient and 
implemented on an iPhone with minimal audio latency. The 
objective and subjective test results presented in the paper show 
that the proposed CRNN-based SE method outperforms 
conventional and neural network-based single-channel SE 
algorithms in terms of speech quality and intelligibility. 
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