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Abstract
In our previous study, we introduce the neural vocoder into
monaural speech enhancement, in which a flow-based gener-
ative vocoder is used to synthesize speech waveforms from the
Mel power spectra enhanced by a denoising autoencoder. As
a result, this vocoder-based enhancement method outperforms
several state-of-the-art models on a speaker-dependent dataset.
However, we find that there is a big gap between the enhance-
ment performance on the trained and untrained noises. There-
fore, in this paper, we propose the self-supervised adversarial
multi-task learning (SAMLE) to improve the noise generaliza-
tion ability. In addition, the speaker dependence is also eval-
uated for the vocoder-based methods, which is important for
real-life applications. Experimental results show that the pro-
posed SAMLE further improves the enhancement performance
on both trained and untrained noises, resulting in a better noise
generalization ability. Moreover, we find that vocoder-based
enhancement methods can be speaker-independent through a
large-scale training.
Index Terms: self-supervised, multi-task learning, vocoder-
based speech enhancement

1. Introduction
Monaural speech enhancement aims at separating speeches
from the noisy backgrounds by using a single microphone.
Since it was formulated as a supervised learning problem,
monaural speech enhancement has achieved a huge progress by
using the deep learning techniques [1]. Early supervised meth-
ods only enhance the magnitude spectrum of noisy speeches but
leave the noisy phase spectrum unchanged [2], such as the ideal
ratio mask (IRM) [3] and spectral mapping [4]. Recent studies
suggest that the phase spectrum is also important for perceptual
quality and speech intelligibility [5]. Therefore, many studies
are making efforts on enhancing the magnitude and phase spec-
tra simultaneously. In the complex spectrum domain, the mag-
nitude and phase spectra are enhanced by estimating the com-
plex ratio mask (CRM) [6] or their clean counterparts [7, 8]. In
the waveform domain, the WaveNet [9] and Wave-U-Net [10]
are introduced and trained with the energy-conserving loss [11]
and frequency-domain loss [12], respectively.

In general, it is more difficult to enhance the complex spec-
trum and waveform than the magnitude spectrum due to the
lack of clear structures in them. Inspired by the progress in
speech synthesis community, we introduce the neural vocoder
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to monaural speech enhancement in our previous study [13].
Specifically, a denoising autoencoder is trained to reconstruct
the clean Mel power spectrum, and a flow-based generative
vocoder, Flowavenet [14], is employed to synthesize the speech
waveform from the enhanced features without using the noisy
phase spectrum or predicting a clean one. As a result, vocoder-
based enhancement methods bypass the problem of phase pre-
diction and outperform several state-of-the-art models on a
speaker-dependent dataset [13].

According to the results in our previous study, we find
that there is a big gap between the enhancement perfor-
mance on trained and untrained noises. Therefore, in this
paper, we propose the self-supervised adversarial multi-task
learning (SAMLE) to improve the noise generalization ability
for vocoder-based enhancement methods. In addition, since
vocoders are originally designed to synthesize waveforms for
a specific speaker, previous vocoder-based enhancement meth-
ods are always trained and evaluated on a speaker-dependent
dataset [13, 15, 16]. However, enhancement methods should
be speaker independent in real-life applications, i.e. speakers
for training and test are different. Therefore, we also evalu-
ate the speaker dependence of flow-based generative vocoder
(Flowavenet) [14] and autoregressive vocoder (WaveRNN) [17]
for both the speech synthesis and enhancement tasks.

2. Vocoder-based enhancement method
The proposed method consists of a denoising autoencoder
(DAE), an autoregressive vocoder and a noise classifier. As
shown in Fig.1, DAE attempts to reconstruct the clean Mel
power spectrum from the noisy complex spectrum, and the au-
toregressive vocoder is used to synthesize the speech waveform
from the predicted Mel power spectrum. Meanwhile, a noise
classifier is involved to perform the self-supervised adversarial
multi-task learning (SAMLE). As in [13], we first train the DAE
and vocoder separately, and then stack them together.

2.1. Denoising autoencoder

In DAE, the encoder is trained to learn an intermediate repre-
sentation h from the complex spectrum of noisy speech, and
the decoder aims at reconstructing the clean Mel power spec-
trum from h. The mean absolute error (MAE) is employed as
the loss function, which is defined between the predicted Mel
power spectrum Ŝ and the clean one S:

LMAE(S, Ŝ) =
1
T

1
F

TX

t=1

FX

f=1

���S(t, f)� Ŝ(t, f)
��� (1)

where T and F indicate the total numbers of time frames and
frequency bins, respectively. | · | means the absolute value. An-
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Figure 1: (Color online) An overview of the proposed vocoder-based enhancement method. The solid and dashed arrows indicate the
forward and backward passes, respectively.

other optional choice here is mean square error (MSE), how-
ever, previous studies show that MAE leads to higher speech
intelligibility and perceptual quality than MSE [18].

Different from our previous study [13], we feed the DAE
with noisy complex spectra rather than the noisy Mel power
spectra. The complex spectrum can benefit speech enhancement
from two respects. First, it contains not only the magnitude
information but also the phases. By using the phase features,
such as group delay, the performance of speech recognition and
speaker identification has been improved [19, 20]. Therefore,
the complex spectrum may provide another cue (phase informa-
tion) for speech enhancement. Second, the complex spectrum
has higher frequency resolution than the Mel power spectrum,
which provides more details for speech enhancement.

2.2. Self-supervised adversarial multi-task learning

2.2.1. Adversarial multi-task learning

Only trained with the reconstruction loss LMAE , DAE may suf-
fer the performance degradation on untrained noises, because
the intermediate representation h is not restricted, which may
contain the information of background noises. To overcome this
problem, an additional task, noise classification, is added to the
DAE, resulting in a multi-task learning scheme. Specifically, a
noise classifier C is involved, which is trained to distinguish
the noise categories according to the intermediate representa-
tions by minimizing the cross entropy:

LCE(c, C (h)) =
KX

k=1

cik logC k

⇣
h(1)
i , h(2)

i , ..., h(T )
i

⌘

(2)
where, K and T are the total numbers of noise categories and
time frames. ci is a one-hot code of the noise category for the
noisy utterance i. h(t)

i means the intermediate representation
of utterance i at frame t. While the noise classifier attempts
to minimize the cross entropy loss LCE , the encoder tries to
maximize it by adjusting the intermediate representation of each
frame. Through the adversarial multi-task learning, the interme-
diate representation can be noise-invariant.

There are two ways to implement the adversarial training.
One is adding a gradient reverse layer (GRL) [21] between
the encoder and noise classifier, like domain adaption methods
[22, 23]. The other way is updating the encoder and noise clas-
sifier iteratively, like the generative adversarial networks [24].
In our preliminary experiments, we find that the latter one ob-

tains slightly better results. Therefore, we employ the second
way in our following experiments.

2.2.2. Self-supervised noise classification

To perform the adversarial multi-task learning, we need to ar-
range the noise category to each noisy utterance. However, it
is expensive and time-consuming to label thousands of noisy
utterances manually. In addition, a noise can be arranged with
several categories from different respects, which is another ob-
stacle to manually noise labeling. Therefore, we propose a self-
supervised noise classification method by developing an auto-
matic noise labeling criterion. According to the energy dis-
tribution in the frequency domain, we divide noises into three
categories, i.e. “low-frequency”, “high-frequency” and “full-
frequency” noises. Formally, the labeling criterion is defined as
follows:

c :=

8
><

>:

0 Pl > Pa/2

1 Ph > Pa/2

2 otherwise

(3)
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Pa :=
TX

t=1

FX

f=1

|N |2(t, f) (6)

where |N |2 is the power spectrum of a noise. Pl, Ph and Pa

represent the total energy in the low, high and all frequency-
bins, respectively. ↵ and � are hyper-parameters to adjust the
range of low and high frequency-bins (0 < ↵ 6 � < 1).

By applying the self-supervised noise classification to the
adversarial multi-task learning, we obtain the self-supervised
adversarial multi-task learning (SAMLE), and its optimizing
target is given as follows:

min
✓,'

max
 

LMAE(S,D'(E✓(X)))� �LCE(c, C (E✓(X)))

(7)
where � is a hyper-parameter to balance the feature reconstruc-
tion and noise classification. Through SAMLE, the intermedi-
ate representations can be noise-invariant, which improves the
noise generalization ability of DAE.
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2.3. Mel power spectrum based WaveRNN

Another component of vocoder-based enhancement methods is
the neural vocoder. In [13], we have evaluated a flow-based gen-
erative vocoder, Flowavenet, for speech enhancement. How-
ever, autoregressive vocoders can achieve higher synthesis per-
formance than the flow-based models [14]. In this paper, we
evaluate the autoregressive vocoder, WaveRNN [17], for speech
enhancement purpose. Compared with the commonly-used
Wavenet [9], WaveRNN has the advantages of fewer model pa-
rameters, faster synthesis speed and comparable quality [17].

In the original WaveRNN, speech waveforms are synthe-
sized from the linguistic features and pitch information, which
are predicted from the text. However, in speech enhancement,
neither the linguistic features nor text are available. Therefore,
we adjust the WaveRNN to synthesize the speech waveform
from the Mel power spectrum, which is extracted from the clean
speech and rescaled in the same manner as [13].

3. Experimental settings
3.1. Datasets

To train a speaker-independent vocoder, we need lots of speak-
ers and enough durations for each speaker [25]. Therefore, we
employ a large-scale internal corpus in our experiment, which
is recorded by 100 males and 100 females. There are 500 utter-
ances (about 34.25 minutes) for each speaker. Among these
speakers, 90 males and 90 females are randomly selected to
train the vocoder. Five males and five females are used for cross
validation. The remaining 10 speakers are used for test.

For the training set of DAE, 930 noise recordings and six
signal-to-noise rates (SNRs) are used to simulate the noisy mix-
tures. The noise recordings come from MUSAN [26], and the
SNR levels are -5, -4, -3, -2, -1, 0 dB. For each SNR level
and noise, four utterances are randomly selected from the clean
training set and mixed with the noise recording, resulting in
22,320 mixtures (930 noises ⇥ 6 SNRs ⇥ 4 utterances). The
validation set of DAE is built in the same manners as the train-
ing set, but only one utterance is randomly selected from the
clean validation set for each SNR and noise, resulting in 5,580
noisy mixtures. In the test set, five noises (babble, factory, op-
troom, SSN and café) are selected from the NOISEX-92 [27]
and DEMAND [28], which do not appear in the training set.
The SNR levels are -5, 0, 5 dB. For each SNR level and noise,
10 utterances are randomly selected from the clean test set, re-
sulting in 150 noisy mixtures.

3.2. Model settings

For the WaveRNN vocoder, we use an open source implemen-
tation 1 , and the number of hidden units is set to 512. The
rescaled Mel power spectrum is extracted with the hanning win-
dow, where the window length is 800 and the hop length is 200.
There are 80 channels in the Mel filter bank, and the low fre-
quency is set to 40 Hz. All audio files are sampled to 16 kHz.

The model architecture of DAE is shown in Table 1. The
convolutional and deconvolutional layers are followed by the
batch normalization [29] and exponential linear units (ELU)
[30] except the output layer, which is followed by the sigmoid
activation function only. The input of DAE, a complex spec-
trum, is extracted from the noisy speech with the same win-
dow settings of Mel power spectrum. Since the value range of
complex spectra is too large, we compress the magnitude with

1Available at https://github.com/fatchord/WaveRNN

Table 1: The architecture of the enhancement model. Here T
denotes the number of time frames in the acoustic features.

layer name input size kernel, stride output size
conv2d 0 2⇥ T ⇥ 401 3⇥ 3, (1, 1) 32⇥ T ⇥ 401
conv2d 1 32⇥ T ⇥ 401 3⇥ 10, (1, 5) 32⇥ T ⇥ 80
conv2d 2 32⇥ T ⇥ 80 3⇥ 3, (1, 1) 32⇥ T ⇥ 80
conv2d 3 32⇥ T ⇥ 80 3⇥ 4, (1, 2) 64⇥ T ⇥ 40
conv2d 4 64⇥ T ⇥ 40 3⇥ 4, (1, 2) 128⇥ T ⇥ 20
conv2d 5 128⇥ T ⇥ 20 3⇥ 4, (1, 2) 256⇥ T ⇥ 10
conv2d 6 256⇥ T ⇥ 10 3⇥ 4, (1, 2) 512⇥ T ⇥ 5
conv2d 7 512⇥ T ⇥ 5 3⇥ 5, (1, 1) 1024⇥ T ⇥ 1
reshape 1 1024⇥ T ⇥ 1 - T ⇥ 1024
blstm 1 T ⇥ 1024 1024⇥ 1024 T ⇥ 1024⇥ 2

fc T ⇥ 2048 2048⇥ 1024 T ⇥ 1024
reshape 2 T ⇥ 1024 - 1024⇥ T ⇥ 1

deconv2d 7 1024⇥ T ⇥ 1 3⇥ 5, (1, 1) 512⇥ T ⇥ 5
deconv2d 6 512⇥ T ⇥ 5 3⇥ 4, (1, 2) 256⇥ T ⇥ 10
deconv2d 5 256⇥ T ⇥ 10 3⇥ 4, (1, 2) 128⇥ T ⇥ 20
deconv2d 4 128⇥ T ⇥ 20 3⇥ 4, (1, 2) 64⇥ T ⇥ 40
deconv2d 3 64⇥ T ⇥ 40 3⇥ 4, (1, 2) 32⇥ T ⇥ 80
deconv2d 2 32⇥ T ⇥ 80 3⇥ 3, (1, 1) 32⇥ T ⇥ 80
deconv2d 1 32⇥ T ⇥ 80 3⇥ 3, (1, 1) 32⇥ T ⇥ 80

output 32⇥ T ⇥ 80 3⇥ 3, (1, 1) 1⇥ T ⇥ 80
reshape 3 1⇥ T ⇥ 80 - T ⇥ 80

cube root and keep the phase unchanged. The desired output
of DAE is the rescaled Mel power spectrum of clean speech,
which is also the input of WaveRNN. For the noise classifier, the
intermediate representations of an utterance are averaged over
the time frames first. Then, the average vector is fed to three
stacked dense layers with 1024 units in each of them. While the
hidden layers are followed by batch normalization and ReLU,
the output layer is followed by the softmax activation.

All models are optimized by using the Adam optimizer with
the learning rate of 0.001, the batch size of 16 and the early
stopping patience of 20. The best model is selected by cross
validation. The hyper-parameters �, ↵ and � are set to 0.01,
0.125 and 0.33, respectively. This setting achieves better results
in our preliminary experiments on hyper-parameter selection.

3.3. Compared methods

We compare our method with five recent models on a speaker-
independent dataset. The first one is Flowavenet-SE, which
is a vocoder-based method for speaker-dependent task in [13].
The second one is TimeMapping [12], which enhances the
speech waveform in the time domain with the Wave-U-Net [31].
The third one is based on the convolutional recurrent network
(CRN), which maps the noisy complex spectrum to its clean
counterpart [32]. The fourth one is PHASEN [8], which com-
prises two streams, i.e. phase prediction stream and magnitude
mapping stream. A Wavenet for speech denoising (Wavenet-
SD) [11] is also compared, in which a non-causal Wavenet is
trained by minimizing the energy-conserving loss.

4. Results
4.1. Method comparison

We employ the short-time objective intelligibility (STOI) [33]
and perceptual evaluation of speech quality (PESQ) [34] as the
evaluation metrics. The results of different models are shown
in Table 2. The proposed method,“ Ours (Complex, SAMLE)”,
consistently outperforms the compared methods under all eval-
uated SNR levels in terms of PESQ. With respect to STOI, the
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Table 2: Comparisons of different models in STOI and PESQ
metrics on untrained speakers and noises.

Metrics STOI (%) PESQ
SNR (dB) -5 0 5 -5 0 5
Noisy 60.93 74.60 87.09 1.06 1.44 1.86
Flowavenet-SE [13] 66.54 80.51 87.69 1.50 2.03 2.48
TimeMapping [12] 73.48 87.52 93.65 1.78 2.36 2.74
CRN [32] 72.76 86.30 93.60 1.73 2.27 2.73
PHASEN [8] 70.17 85.71 93.57 1.61 2.24 2.73
Wavenet-SD [11] 71.62 86.19 93.11 1.56 2.12 2.51
Ours (Mel, SAMLE) 72.04 83.91 91.69 1.71 2.23 2.71
Ours (Complex, Manual) 75.28 87.87 93.31 1.85 2.43 2.85
Ours (Complex, SAMLE) 75.16 87.97 93.33 1.86 2.44 2.83

Table 3: The speaker dependence of vocoder-based enhance-
ment methods in terms of STOI and PESQ scores.

Models Trained Speakers Untrained Speakers
STOI (%) PESQ STOI (%) PESQ

Flowavenet-oracle [14] 92.51 3.17 92.52 3.13
WaveRNN-oracle 96.94 3.52 96.95 3.49
Noisy 72.47 1.41 74.17 1.47
Flowavenet+DAE [13] 77.42 1.97 78.25 2.00
WaveRNN+DAE 84.98 2.39 85.49 2.38

proposed method achieves better enhancement performance un-
der low and middle SNR levels (-5, 0 dB). For the high SNR
level (5 dB), our result is also good enough (> 93%). By com-
paring with “Ours (Mel, SAMLE)”, we find that the enhance-
ment performance can be much improved by using the noisy
complex spectrum as the input of DAE. This indicates that com-
plex spectra can provide more cues to benefit the speech en-
hancement than Mel power spectra.

In addition, we also tried to use the handcrafted noise labels
to perform the adversarial multi-task learning (seen in “Ours
(Complex, Manual)”), in which the noisy mixtures are manu-
ally divided into 18 categories according to the acoustic scene
of background noises. Compared with the handcrafted noise la-
bels, our self-supervised noise classification achieves the com-
parable STOI and PESQ scores. This indicates that the energy
distribution in the frequency domain is a good classification cri-
terion for the adversarial multi-task learning of DAE.

4.2. Speaker dependence

The speaker dependence of WaveRNN and Flowavenet is evalu-
ated for the speech enhancement purpose by using the enhanced
Mel power spectrum as an input. To obtain an upper bound of
the vocoder-based enhancement methods, vocoders are also fed
with the clean Mel power spectrum. The results on trained and
untrained speakers are shown in Table 3, where “oracle” means
that the vocoder is fed with clean features.

From the table, we can see that, for both Flowavenet and
WaveRNN-based methods, the enhancement performance is
similar on trained and untrained speakers in terms of the im-
provements on STOI and PESQ scores. This indicates that
vocoder-based enhancement methods can be speaker indepen-
dent through a large-scale training. In addition, the synthesis
performance is also similar on trained and untrained speakers
with the clean features as inputs. Compared with Flowavenet,
WaveRNN achieves higher STOI and PESQ scores no matter
the input is clean or enhanced features, which indicates that the
autoregressive vocoder is a better choice for speech enhance-
ment purpose than the flow-based generative vocoder.

Table 4: The impact of SAMLE on trained and untrained noises.

SNR Noise Types STOI Improvement (%) PESQ Improvement

-5 dB Trained 15.32 7! 15.63 0.93 7! 0.94
Untrained 13.85 7! 14.23 0.76 7! 0.80

0 dB Trained 12.16 7! 12.38 1.08 7! 1.10
Untrained 12.80 7! 13.37 0.97 7! 1.00

5 dB Trained 5.27 7! 5.63 0.97 7! 1.01
Untrained 6.10 7! 6.24 0.96 7! 0.97
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Figure 2: The intermediate representations learned by (a) fully-
supervised and (b) SAMLE-based DAEs.

4.3. The impact of SAMLE

Table 4 shows the impact of SAMLE on trained and un-
trained noises. We can see that the proposed SAMLE increases
the STOI and PESQ improvements for both trained and un-
trained noises under all evaluated SNR levels. This indicates
that SAMLE can improve the noise generalization ability of
vocoder-based enhancement methods.

To have an insight of how SAMLE affects the feature re-
construction process, we compare the intermediate representa-
tions learned by the fully-supervised and SAMLE-based DAEs
in Figure 2, where the fully-supervised DAE is trained with
LMAE only. For visualization, the dimensionality of learned
representations is reduced from 1,024 to 2 by the t-SNE [35].
Only using LMAE , the learned intermediate representations on
trained and untrained noises can be distinguished from each
other obviously. On the contrary, by performing SAMLE, the
representations on untrained noises are “embedded” to those of
trained noises. In this manner, the vocoder-based enhancement
models achieve better generalization ability on untrained noises.

5. Conclusions
In this paper, the self-supervised adversarial multi-task learning
(SAMLE) is proposed for vocoder-based enhancement meth-
ods, which can improve the noise generalization ability on both
trained and untrained noises. Furthermore, we evaluate the
speaker dependence for vocoder-based enhancement methods,
which is crucial in real-life applications. Through a large-
scale training, the autoregressive vocoder, WaveRNN can be
speaker independent and achieve a better performance than the
flow-based generative vocoder with respect to synthesis and
enhancement performance. By using the SAMLE and Wav-
eRNN, our vocoder-based method outperforms several state-
of-the-art models, which presents another optional way for
speaker-independent monaural speech enhancement.
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