
Neural Discriminant Analysis for Deep Speaker Embedding

Lantian Li, Dong Wang, Thomas Fang Zheng

Center for Speech and Language Technologies, Tsinghua University
lilt@cslt.org; wangdong99@mails.tsinghua.edu.cn; fzheng@tsinghua.edu.cn

Abstract
Probabilistic Linear Discriminant Analysis (PLDA) is a

popular tool in open-set classification/verification tasks. How-
ever, the Gaussian assumption underlying PLDA prevents it
from being applied to situations where the data is clearly non-
Gaussian. In this paper, we present a novel nonlinear version
of PLDA named as Neural Discriminant Analysis (NDA). This
model employs an invertible deep neural network to transform
a complex distribution to a simple Gaussian, so that the linear
Gaussian model can be readily established in the transformed
space. We tested this NDA model on a speaker recognition task
where the deep speaker vectors (x-vectors) are presumably non-
Gaussian. Experimental results on two datasets demonstrate
that NDA consistently outperforms PLDA, by handling the non-
Gaussian distributions of the x-vectors.
Index Terms: speaker recognition, neural discriminant analysis

1. Introduction
Probabilistic Linear Discriminant Analysis (PLDA) [1, 2] has
been used in a wide variety of recognition tasks, such as speak-
er recognition (SRE) [3]. In nearly all the situations, PLDA
cooperates with a speaker embedding front-end, and plays the
role of scoring the similarity between one or a few enrollment
utterances and the test utterance, represented in the form of s-
peaker vectors. Traditional speaker embedding approaches are
based on statistical models, in particular the i-vector model [4],
and recent embedding approaches are based on deep neural net-
works (DNNs) [5, 6], for which the x-vector model [7, 8, 9] is
the most successful.

PLDA is a full-generative model, based on two primary as-
sumptions: (1) all the classes are Gaussians and these Gaus-
sians share the same covariance matrix; (2) the class means are
distributed following a Gaussian. The full-generative model of-
fers a principle way to deal with classification tasks where the
classes are represented by limited data. Taking SRE as an ex-
ample, in most cases, a speaker registers itself with only one
or a few enrollment utterances, which means that the distribu-
tion of the speaker is not fully represented and the identifica-
tion/verification has to be conducted base on an uncertain mod-
el. The PLDA model solves this problem in a Bayesian way: it
represents each speaker as a Gaussian with an uncertain mean,
and computes the likelihood of a test utterance by marginaliz-
ing the uncertainty. Due to this elegant uncertainty treatment,
PLDA has been widely used in SRE, and has achieved state-
of-the-art performance in many benchmarks, in particular when
combined with length normalization [10].

Although promising, PLDA suffers from a limited repre-
sentation capability. Specifically, PLDA is a linear Gaussian
model, and the prior, the conditional, and the marginal are al-
l assumed to be Gaussian. This means that if the distribution
of speaker vectors do not satisfy this assumption, PLDA cannot
represent the data well, leading to inferior performance. This

problem is not very serious for speaker vectors that are derived
from statistical models where the speaker vectors have been as-
sumed to be Gaussian, e.g., the JFA model [11, 12] and the
i-vector model [4]. However, for speaker vectors derived from
models that do not possess such a Gaussian assumption, PLDA
may be biased. This is particularly the case for x-vectors [7]:
they are derived from a deep neural network and there is not
any explicit or implicit Gaussian constraint on the prior and the
conditional.

In fact, the importance of Gaussianality of the data for PL-
DA has been noticed for a long time. For example, Kenny et
al. [3] found that i-vectors exhibit a heavy-tail property and so
are not appropriate to be modeled by Gaussians. They presented
a heavy-tail PLDA where the prior and the conditional are set
to be Student’s t-distributions. Garcia et al [10] found a simple
length normalization can improve Gaussianality of i-vectors,
and the traditional PLDA model can recover the performance of
the heavy-tail PLDA if the test i-vectors are length-normalized.

The non-Gaussianality of x-vectors were recognized by Li
et al. [13]. They found that x-vectors exhibit more complex
within-class distributions compared to i-vectors, and confirmed
the non-Gaussianality of x-vectors by computing the Skewness
and Kurtosis of the within-class and between-class distribution-
s. Further analysis was conducted in [14], and a VAE model
was used to perform normalization for x-vectors. Recently, a
more complex normalization technique based on a normaliza-
tion flow was conducted by Cai et. al [15]. All these studies try
to produce more Gaussian speaker vectors, so that PLDA model
can be employed more effectively.
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Figure 1: Neural discriminant analysis. The complex within-
class distributions (on the right) are transformed to Gaussians
with shared covariance by an invertible transform, and then the
linear Bayesian model is established in the transformed space.
Each color represents an individual class (speaker).

All the approaches mentioned above cannot be regarded as
perfect. The heavy-tailed PLDA and the length normalization
cannot deal with complex distributions, and the normalization
techniques do not optimize the normalization model and the s-
coring model in a joint way. In this paper, we present a Neural
Discriminant Analysis (NDA) model that can deal with non-
Gaussian data in a principle way. It keeps the strength of PL-
DA in handling uncertain class representations, while offers the
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capability to represent data with complex within-class distri-
butions. The central idea, as shown in Figure 1, comes from
the distribution transformation theorem [16], by which any for-
m of non-Gaussian distribution can be transformed to a Gaus-
sian, and so a linear Bayesian model can be established on the
transformed variables. We tested the NDA model on SRE tasks
with two datasets, VoxCeleb and CNCeleb, and achieved rather
promising results.

The organization of this paper is as follows. Section 2
presents the NDA model, and experiments are reported in Sec-
tion 3. The paper is concluded in Section 4.

2. Method
2.1. Revisit PLDA

PLDA models the generation process of multiple classes. For
each class, the generation process is factorized into two steps:
firstly sample a class meanµµµ from a Gaussian prior, and second-
ly sample a class member xxx from a conditional which is another
Gaussian centered on µµµ. Without loss of generality, we shall
assume the prior is diagonal and the conditional is isotropic1.
This leads to the following probabilistic model:

p(µµµ) = N(µµµ;0, εεεI) (1)

p(xxx|µµµ) = N(xxx;µµµ, σI), (2)

where εεεI and σI are the between-class and within-class covari-
ances, respectively.

With this model, the probability that xxx1, ...,xxxn belong to
the same speaker can be computed by:

p(xxx1, ...,xxxn) =

∫
p(xxx1, ...,xxxn|µµµ)p(µµµ)dµµµ

∝
∏
j

ε
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(3)

where j indexes the dimension.
For speaker recognition, our essential goal is to estimate

the probability p(xxx|xxx1, ...,xxxn), where xxx is the test data and
xxx1, ...,xxxn represent the enrollment data. Focusing on the ver-
ification task, the above probability should be normalized by a
background probability that xxx belongs to any possible classes.
This leads to a normalized likelihood (NL) for speaker verifica-
tion:

R(xxx;xxx1, ...,xxxn) =
p(xxx|xxx1, ...,xxxn)

p(xxx)
.

It is easy to verify that the above NL score is equal to the
likelihood ratio (LR), the standard form for PLDA scoring in
the seminal papers [1, 2]:

R(xxx;xxx1, ...,xxxn) =
p(xxx,xxx1, ...,xxxn)

p(xxx)p(xxx1, ...,xxxn)
,

1It can be verified that a linear transform does not change the PLDA
score, which makes it possible to transform any form of Gaussians of
the prior and the conditional to the form of Eq. (1) and Eq. (2). Besides,
PLDA with a low-rank loading matrix can be regarded as a special form
of Eq. (1), by setting some of the diagonal elements of εεε to be 0.

and all the terms in the numerator and denominator can be com-
puted by Eq. (3).

2.2. Neural discriminant analysis (NDA)

All the derivations for the PLDA model are based on the
Gaussian assumption on the prior and conditional distributions,
shown by Eq. (1) and Eq. (2). We shall relax this assumption
by introducing a new probabilistic discriminant model based on
neural net and Bayesian inference.

2.2.1. Distribution transform

Suppose an invertible transform f maps a variable zzz to xxx, i.e.,
xxx = f(zzz). According to the principle of distribution transfor-
mation for continuous variables [16], we have:

p(xxx) = p(zzz)|∂f
−1(xxx)

∂xxx
|, (4)

where the second term is the absolute value of the determinant
of the Jacobian matrix of f−1, the inverse transform of f . This
term reflects the change of the volume of the distribution with
the transform, and is often called the entropy term. For simplic-
ity, we will denote this term by Jxxx:

p(xxx) = p(zzz)Jxxx. (5)
Note that p(xxx) and p(zzz) are in different distribution forms. If
we assume p(zzz) to be a Gaussian, then this (inverse) transfor-
m plays a role of Gaussianization [17]. It was demonstrated
that if f is complex enough, any complex p(xxx) can be trans-
formed to a Gaussian or a uniform distribution [18]. Recently,
there is numerous research on designing more efficient transfor-
m functions by deep neural networks, and most of them adopt
a modular architecture by which simple invertible modules are
concatenated to attain a complex function. This architecture is
often called Normalizing Flow (NF) [18, 19, 20, 21, 22] and
will be used in this work to implement the transform f .

2.2.2. NDA model

A key idea of NDA is to use an NF to map the distribution of one
class in the xxx space to the zzz space, where p(zzz) is a Gaussian.
After this transform, we can build a linear Gaussian model in
the zzz space to describe the non-Gaussian observations in the xxx
space, as shown in Figure 1.

As in PLDA, we assume that the prior p(µµµ) for class meanµµµ
is a diagonal Gaussian, and the conditional distribution p(zzz|µµµ)
is a standard multivariate Gaussian whose covariance is set to
I. This linear Gaussian model will represent the complex non-
Gaussian data xxx via the invertible transform f represented by
an NF.

It can be shown that the probability p(xxx1, ...,xxxn) can be
derived as follows:

p(xxx1, ...,xxxn) =

∫
p(xxx1, ...,xxxn|µµµ)p(µµµ)dµµµ

=

n∏
i

Jxxxi

∫
p(zzz1, ..., zzzn|µµµ)p(µµµ)dµµµ

=

n∏
i

Jxxxip(zzz1, ..., zzzn). (6)

Note that the distribution p(µµµ) and p(zzz|µµµ) are both Gaussians,
and so p(zzz1, ..., zzzn) can be easily computed as in PLDA, fol-
lowing Eq. (3).
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This is a rather simple form and it indicates that if we can
train an NF f , the complex marginal distribution p(xxx1, ...,xxxn)
can be computed by transforming the observation xxxi to a latent
code zzzi, and then computing the simple marginal p(zzz1, ..., zzzn)
plus a correction term

∏n
i Jxxxi . Interestingly, this correction

term will be cancelled when computing the likelihood ratio for
SRE scoring:

R(xxx;xxx1, ...,xxxn) =
p(xxx,xxx1, ...,xxxn)

p(xxx)p(xxx1, ...,xxxn)

=
p(zzz,zzz1, ..., zzzn)

p(zzz)p(zzz1, ..., zzzn)
.

We therefore create a discriminant model which keeps the sim-
ple linear Gaussian form in the latent space, but can deal with
any complex within-class distributions. Finally, we note that if
the transform f is linear, NDA falls back to PLDA.

2.2.3. Model training

The NDA model can be trained following the maximum-
likelihood (ML) principle. Since all the speakers are indepen-
dent, the objective function is formulated by:

L(f, εεε) =

K∑
k=1

log p(xxx1, ...,xxxnk )

=

K∑
k=1

log
{ nk∏

i

Jxxxip(zzz1, ..., zzznk )
}
,

where K is the number of speakers in the training data. Dur-
ing the training, firstly transform the training samples xxxi to zzzi,
and then compute Jxxxi based on f and xxxi, secondly compute
p(zzz1, ..., zzzn) following Eq. (3). Note that the covariance of
p(zzz|µµµ) has been fixed to I and so σ is not a trainable param-
eter.

An important issue of the training algorithm is that for each
speaker, all the data need to be processed all at once. Therefore,
the mini-batch design should be speaker-based. Moreover, we
found the training will be unstable if there are too few speakers
in one mini-batch. We solve this problem by postponing the
model update when adequate speakers have been processed.

3. Experiments
3.1. Data

Three datasets were used in our experiments: VoxCeleb [23,
24], SITW [25] and CNCeleb [26]. More information about
these three datasets is presented below.

VoxCeleb: This is a large-scale audiovisual speaker dataset
collected by the University of Oxford, UK. The entire database
involves VoxCeleb1 and VoxCeleb2. This dataset, after remov-
ing the utterances shared by SITW, was used to train the front-
end x-vector, PLDA and NDA models. The entire dataset con-
tains 2, 000+ hours of speech signals from 7, 000+ speakers.
Data augmentation was applied to improve robustness, with the
MUSAN corpus [27] was used to generate noisy utterances, and
the room impulse responses (RIRS) corpus [28] was used to
generate reverberant utterances.

SITW: This is a standard evaluation dataset excerpted from
VoxCeleb1, which consists of 299 speakers. In our experiments,
both the Dev.Core and Eval.Core were used for evaluation.

CNCeleb: This is a large-scale free speaker recognition
dataset collected by Tsinghua University. It contains more than
130k utterances from 1, 000 Chinese celebrities. It covers 11
diverse genres, which makes speaker recognition on this dataset
much more challenging than on SITW. The entire dataset was
split into two parts: CNCeleb.Train, which involves 111, 257
utterances from 800 speakers, was used to train the PLDA and
the NDA models; CNCeleb.Eval, which involves 18, 024 utter-
ances from 200 speakers, was used for evaluation.

3.2. Model Settings

Our SRE system consists of two components: an x-vector fron-
tend that produces speaker vectors, and a scoring model that
produces pair-wise scores to make genuine/imposter decisions.

3.2.1. Front-end

x-vector: The x-vector frontend was created using the Kaldi
toolkit [29], following the VoxCeleb recipe. The acoustic fea-
tures are 40-dimensional Fbanks. The main architecture con-
tains three components. The first component is the feature-
learning component, which involves 5 time-delay (TD) layers
to learn frame-level speaker features. The slicing parameter-
s for these 5 TD layers are: {t-2, t-1, t, t+1, t+2}, {t-2, t,
t+2}, {t-3, t, t+3}, {t}, {t}. The second component is the
statistical pooling component, which computes the mean and s-
tandard deviation of the frame-level features from a speech seg-
ment. The final one is the speaker-classification component,
which discriminates between different speakers. This compo-
nent has 2 full-connection (FC) layers and the size of its output
is 7, 185, corresponding to the number of speakers in the train-
ing set. Once trained, the 512-dimensional activations of the
penultimate FC layer are read out as an x-vector.

3.2.2. Back-end

PLDA: We implemented the standard PLDA model [1] using
the Kaldi toolkit [29].
NDA: We implemented the proposed NDA model in PyTorch.
The invertible transform f was implemented using the RealNVP
architecture [22], a particular NF that does not preserve the vol-
ume of the distribution. We used 10 non-volume preserving
(NVP) layers, and the Adam optimizer [30] was used to train
the model, with the learning rate set to 0.001. For VoxCele-
b, each mini-batch covers x-vectors from 600 speakers, and for
CNCeleb, each mini-batch covers x-vectors from 200 speakers.

3.3. Basic results

Experimental results on SITW Dev.Core, SITW Eval.Core and
CNCeleb.Eval are shown in Table 3. The results are reported in
terms of equal error rate (EER) and minimum of the normalized
detection cost function (minDCF) with two settings: one with
the prior target probability Ptar set to 0.01 (DCF(10−2)), and
the other with Ptar set to 0.001 (DCF(10−3)).

Firstly, we focus on the full-dimensional PLDA (512) and
NDA (512) scoring. It can be observed that NDA scoring con-
sistently outperformed PLDA scoring on the three evaluation
datasets, confirming that NDA is effective and more suitable as
the x-vector back-end. Besides, the performance of NDA on the
CNCeleb.Eval is obviously better than that of PLDA (13.95%
vs. 12.51%). Considering the higher complexity of CNCele-
b [26], this demonstrates that NDA has better capability in deal-
ing with complicated and challenging test conditions.
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Secondly, we discarded some least discriminative dimen-
sions, i.e., dimensions corresponding to the smallest εi. This
approximates the subspace PLDA/NDA. The results are shown
in Table 3 as well. It can be found that with this dimensionality
reduction, performance improvement was generally observed.
Once again, NDA outperforms PLDA on almost all the datasets
and with all the settings.

Table 1: Basic results on three evaluation datasets.

SITW Dev.Core
Front-end Scoring Dim DCF(10−2) DCF(10−3) EER(%)
x-vector PLDA 512 0.485 0.704 4.082

PLDA 300 0.380 0.581 3.389
PLDA 150 0.307 0.480 3.196
NDA 512 0.480 0.720 4.043
NDA 300 0.390 0.593 3.466
NDA 150 0.312 0.487 3.196

SITW Eval.Core
Front-end Scoring Dim DCF(10−2) DCF(10−3) EER(%)
x-vector PLDA 512 0.497 0.764 4.456

PLDA 300 0.393 0.619 3.745
PLDA 150 0.333 0.503 3.581
NDA 512 0.494 0.771 4.155
NDA 300 0.398 0.637 3.527
NDA 150 0.343 0.516 3.417

CNCeleb.Eval
Front-end Scoring Dim DCF(10−2) DCF(10−3) EER(%)
x-vector PLDA 512 0.691 0.837 13.95

PLDA 300 0.674 0.822 13.72
PLDA 150 0.660 0.816 13.63
NDA 512 0.623 0.770 12.51
NDA 300 0.613 0.757 12.45
NDA 150 0.612 0.752 12.60

3.4. Analysis for Gaussianality

We have argued that the strength of NDA lies in the fact that
the nonlinear transform f can map non-Gaussian observations
xxx to Gaussian latent codes zzz. To test this argument, we com-
pute the Gaussianality of the x-vectors before and after the N-
DA transform. We compute the Skewness and Kurtosis for the
marginal distribution (overall distribution without class label-
s), conditional distribution (within-class distribution), and prior
distribution (distribution of class means). The results are report-
ed in Table 2.

It can be seen that the values of Skewness and Kurtosis of
the x-vectors are substantially reduced after NDA transform, e-
specially with the conditional distribution. This is expected as
the conditional distribution has been assumed to be Gaussian
when NDA is designed and trained. This improved Gaussianal-
ity allows a linear Gaussian model in the transformed space, as
supposed by NDA.

Table 2: Gaussianality of x-vectors with/without NDA transfor-
m.

VoxCeleb Marginal Conditional Prior
Front-end NDA Skew Kurt Skew Kurt Skew Kurt
x-vector - -0.087 -0.361 0.015 1.060 -0.045 -0.524

+ 0.015 0.134 -0.004 0.267 0.045 0.301

CNCeleb Marginal Conditional Prior
Front-end NDA Skew Kurt Skew Kurt Skew Kurt
x-vector - -0.139 0.180 -0.034 1.160 -0.160 -0.271

+ 0.002 0.122 0.001 0.163 -0.022 1.244

3.5. Analysis for LDA pre-processing

It is well known that LDA-based dimension reduction often pro-
vides significant performance improvement for x-vector sys-
tems [13]. Recently, the authors found that the contribution
of LDA for x-vector systems lies in normalization rather than
discrimination. More specifically, for x-vectors, the least dis-
criminative dimensions coincide with the most non-Gaussian
dimensions. Therefore, LDA may improve the Gaussianality
of x-vectors by discarding the least discriminative dimension-
s [15].

Considering the success of the combination of LDA and
PLDA, it is interesting to test if LDA pre-processing contributes
to NDA. The results are shown in Table 3, where the dimension-
ality of the LDA projection space was set to 150 for VoxCeleb
dataset and 300 for CNCeleb dataset. These configurations de-
livered the best performance with both PLDA and NDA.

It can be found that the performance was slightly improved
after the LDA pre-processing, with both PLDA and NDA. This
is a bit surprising for NDA, as NDA can deal with non-Gaussian
data by itself, and so does not require LDA to improve the Gaus-
sianality of the data. One possibility is that the reduced dimen-
sionality allows a better NDA modeling with limited data. How-
ever, more investigation is required.

Table 3: Performance with/without LDA pre-processing.

SITW Dev.Core
Front-end Scoring DCF(10−2) DCF(10−3) EER(%)
x-vector PLDA (150) 0.307 0.480 3.196

NDA (150) 0.312 0.487 3.196
x-vector PLDA 0.301 0.469 3.157
+ LDA (150) NDA 0.295 0.472 3.080

SITW Eval.Core
Front-end Scoring DCF(10−2) DCF(10−3) EER(%)
x-vector PLDA (150) 0.333 0.503 3.581

NDA (150) 0.343 0.516 3.417
x-vector PLDA 0.329 0.496 3.554
+ LDA (150) NDA 0.335 0.508 3.280

CNCeleb.Eval
Front-end Scoring DCF(10−2) DCF(10−3) EER(%)
x-vector PLDA (300) 0.674 0.822 13.72

NDA (300) 0.613 0.757 12.45
x-vector PLDA 0.675 0.821 13.73
+ LDA (300) NDA 0.561 0.681 12.28

4. Conclusions
We proposed a novel NDA model in this paper. It is a nonlin-
ear extension of PLDA and can deal with data with complex
within-class distributions. The key component of NDA is an
NF-based invertible transform, which maps a complex distribu-
tion to a simple Gaussian so that a linear Gaussian model can
be established in the transformed space. We applied NDA to
SRE tasks and compared the performance with PLDA. Results
on the SITW and the CNCeleb datasets demonstrated that NDA
can deliver consistently better performance compared to PLDA.
Future work will investigate the joint training of the NDA scor-
ing model and the speaker embedding model, and apply NDA
to raw acoustic features directly.
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