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Abstract
Recently, speaker verification systems using deep neural net-
works have shown their effectiveness on large scale datasets.
The widely used pairwise loss functions only consider the dis-
crimination within a mini-batch data (short-term), while either
the speaker identity information or the whole training dataset
is not fully exploited. Thus, these pairwise comparisons may
suffer from the interferences and variances brought by speaker-
unrelated factors. To tackle this problem, we introduce the
speaker identity information to form long-term speaker embed-
ding centroids, which are determined by all the speakers in the
training set. During the training process, each centroid dy-
namically accumulates the statistics of all samples belonging
to a specific speaker. Since the long-term speaker embedding
centroids are associated with a wide range of training samples,
these centroids have the potential to be more robust and discrim-
inative. Finally, these centroids are employed to construct a loss
function, named long short term speaker loss (LSTSL). The pro-
posed LSTSL constrains that the distances between samples and
centroid from the same speaker are compact while those from
different speakers are dispersed. Experiments are conducted on
VoxCeleb1 and VoxCeleb2. Results on the VoxCeleb1 dataset
demonstrate the effectiveness of our proposed LSTSL.

Index Terms: speaker verification, speaker embedding, speaker
centroid, x-vectors

1. Introduction
Speaker verification (SV) is the process of automatically verify-
ing an speech utterance whether belongs to a claimed identity.
According to the restriction of the uttered content, speaker veri-
fication can be approached as a text-dependent speaker verifica-
tion (TD-SV) or text-independent speaker verification (TI-SV)
task [1]. Without the constraint of a specific phrase, TI-SV has
a wide variety of applications including smart home and speech
monitor.

The combination of i-vector and Probabilistic Linear Dis-
criminant Analysis (PLDA) has dominated for over 10 years
[2]. In these systems, i-vector is employed as the feature ex-
tractor and PLDA is served as the back-end classifier. These
two components are loosely connected and optimized using dif-
ferent criteria.

In the last few years, more studies have presented supe-
rior results using deep neural networks for extracting speaker
representations. In [3], four fully connected layers are trained
for speaker classification in the training step. In the verifica-
tion step, the speaker embedding (‘d-vector’) is calculated from
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averaging the last hidden layer’s output over frames. Using
this pipeline, more well-designed multi-class classification loss
functions such as angular softmax loss (ASoftmax), additive
margin softmax loss (AMSoftmax), additive angular margin
softmax (ArcSoftmax) and large margin cosine loss (LMCL)
have been proposed for SV task [4, 5, 6, 7]. However, these sys-
tems optimized by softmax loss and its variants do not take the
discrimination of different speaker embedding pairs into con-
sideration, leading to difficulty in distinguishing between posi-
tive pair (verification utterances belong to the same speaker) and
negative pair (verification utterances belong to different speak-
ers).

To address this problem, some efforts have been made to
explore end-to-end speaker verification models. These meth-
ods drive the network to directly discriminate the positive pair
and negative pair. In an end-to-end system, the loss function
plays a significant role in minimizing intra-speaker divergence
and maximizing inter-speaker separability of the speaker em-
beddings. Following this idea, several metric learning methods
such as contrastive loss [8, 9], triplet loss [10, 11] are applied to
directly optimize the speaker representation. The main concept
behind these methods is to construct training pairs or triplets
to simulate the enrollment and testing stages of speaker verifi-
cation. Nevertheless, these methods suffer from dramatic data
expansion when constituting sample pairs during the training
and the performance is sensitive to the pair sampling strategies.
Also, choosing an appropriate sampling strategy for different
datasets is difficult and time-consuming.

Very recently, affinity loss (AL) is proposed for short utter-
ance speaker verification [12]. AL does not rely on the pair
selection strategy and flexibly makes use of all speaker em-
beddings pairs’ comparison information in a mini-batch, which
has the potential to improve the discrimination of speaker em-
beddings. However, without explicit identity information, the
SV model has to exclude the influence brought by speaker-
unrelated factors, such as the channel variation and speaker ac-
cents, which may interfere the extraction of intrinsic speaker
representation. This variation may lead to the decentralization
of intra-speaker samples, thus rendering slow convergence and
suboptimal performance.

In this paper, based on our previous work [12], we pro-
pose a novel loss function referred as long short term speaker
loss (LSTSL) for end-to-end SV, which improves the procedure
of individual training pair comparison by an updatable speaker
embedding centroid learning algorithm. Specifically, the one-
hot speaker label information is leveraged to compute the cen-
troid (mean) of each speaker according to mini-batch composi-
tion, named as short-term speaker embedding centroids. Then,
the speakers involved in the short-term speaker embeddings
centroids are used to update the long-term speaker embedding
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Figure 1: The architecture of x-vector with LSTSL. B denotes the batch size of input data, D is the dimension of output speaker
embedding. To facilitate understanding, in this figure, the batch of data is sorted by speaker identity. During the training stage, all
batches of data are composed randomly.

centroids. The long-term speaker embedding centroids consider
all the speakers in the training set, while the short-term speaker
embedding centroids only cover speakers in a mini-batch. Fi-
nally, the intra-speaker variability is compressed by minimizing
the differences between speaker embeddings and their corre-
sponding updated long-term centroids. The inter-speaker sep-
arability is achieved by pulling away the speaker embeddings
and updated long-term speaker centroids that belong to different
speaker identities. Experimental results on VoxCeleb1 demon-
strate the effectiveness of our proposed loss function, and sys-
tems optimized by LSTSL outperform existing speaker verifi-
cation methods and achieve state-of-the-art performance.

The rest of paper is organized as follows. Section 2 gives a
brief introduction to the speaker embedding extractor and affin-
ity loss. Section 3 describes the proposed LSTSL in detail.
Database description, training paradigm and results analysis are
described in Section 4. Section 5 concludes the paper.

2. Related Works
2.1. Speaker Embedding Extractor

The network architecture of our x-vector baseline system is sim-
ilar to that described in [13], as shown in Fig. 1. The first five
TDNN (or 1-dimensional dilated CNN) layers are stacked to ex-
tract the frame-level features. The TDNN layers with dilation
rates of 2 and 4 are used for the second and third layers, respec-
tively, while the others retain the dilation rate of 1. The kernel
sizes of these five layers are 5, 3, 3, 1 and 1, respectively. The fi-
nal frame-level output vectors of the whole variable-length seg-
ment are aggregated into a fixed segment-level vector through
the statistics pooling layer. The mean and standard deviation
are calculated and then concatenated for statistics pooling. Two
additional fully connected layers followed with a softmax layer
are used to predict speaker labels.

2.2. Affinity Loss

To better understand the proposed LSTSL, we give a brief re-
view of the original AL. Assume that the output of x-vector fea-

ture extractor is S = {sb}Bb=1 ∈ R
B×D , where B is the mini-

batch size and D is the dimension of the output. It is noted that
each speaker embedding sb is a unit-norm speaker embedding
(i.e. ‖s‖2 = 1). Correspondingly, the speaker identity matrix
is Y = {yb}Bb=1 ∈ R

B×N , where N is the total number of
speakers involved in the training set. Following mathematic no-
tations, the matrix SS� ∈ R

B×B is termed as the speaker em-
bedding affinity matrix and YY� ∈ R

B×B as speaker identity
affinity matrix, respectively. Formally, we define the affinity
loss as:

LAL = ‖SS� − 2YY� + 1‖2F
=

∑

i,j

yi=yj

(1− cos(si, sj))
2 +

∑

i,j

yi �=yj

(−1− cos(si, sj))
2

(1)

where ‖·‖2F denotes the squared Frobenius norm. It is noted that
(SS�)ij = cos(si, sj) indicates the cosine similarity between
si and sj . If segment i and j belong to the same speaker, then
the cosine similarity between si and sj should be close to 1.
Similarly, 2YY� − 1 is a binary matrix, specifically, if the
segment i and j belong to the same speaker (with the same one-
hot label vector) then we have (2YY� − 1)ij = 1. Otherwise,
we have (2YY� − 1)ij = −1.

3. Long short term speaker loss
As discussed in Section 2, AL takes the pair information con-
structed by speaker labels as supervision. However, without
the explicit identity information, only use the pairwise compari-
son information, the optimization process may be dominated by
speaker-unrelated factors, such as genders, channel variations
and speaker accents. Thus, the intrinsic speaker representation
extraction is hindered and the network may fall into the subop-
timal local minima early on in training.

To alleviate this problem, we propose a novel loss function,
integrating the one-hot speaker label information and pairwise
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comparisons as supervision information to optimize the speaker
embedding extractor by simultaneously maximizing the separa-
bility of speaker embeddings with different identities and the
compactness of those with the same identity.

For a randomly composed mini-batch data, we employ a
series of matrix operations to compute the speaker embedding
centroids. Specifically, considering the speaker identity matrix
Y, we use a matrix multiplication Y�S ∈ R

N×D to collect
and aggregate the speaker embeddings S according to the iden-
tity. The correlation matrix Y�Y ∈ R

N×N is a diagonal ma-
trix, where each diagonal element denotes the number of occur-
rences of a specific speaker in a mini-batch. So that the short-
term speaker embedding centroids C, which is the speaker cen-
troids in a mini-batch, can be obtained as follow:

C = (Y�Y)−1Y�S (2)

where C ∈ R
N×D , each row of C represents the centroid

(mean) speaker embeddings of corresponding speakers in a
mini-batch. If a speaker n is not sampled in this mini-batch
data, then the speaker’s corresponding row vectors is full zeros.

However, C only considers a limited number of speakers
according to mini-batch composition, which is difficult to ex-
clude the influence brought by speaker-unrelated factors. This
makes the obtained speaker embedding centroids unstable. To
obtain a more precise speaker embedding centroid, instead of
the utterances sampled in a mini-batch, we consider all the ut-
terances that belong to a speaker in the training set. Specifi-
cally, at each iteration t, we use the short-term speaker embed-
ding centroids C(t) computed with current batch data, to accu-
mulate and update the long-term speaker embedding centroids
O(t) = {oti}Ni=1 ∈ R

N×D , as follows:

O(t) = α ∗O(t−1) + (1− α) ∗C(t) (3)

where a hyper-parameter α ∈ [0, 1] adjusts the ratios between
the short-term speaker embedding centroids and the long-term
speaker embedding centroids. O(t−1) denotes the long-term
speaker embedding centroids at iteration t − 1, O(t) denotes
the updated long-term speaker embedding centroids.

To fascinate computation, we broadcast the updated long-
term speaker embedding centroids O(t) as YC(t) ∈ R

B×D ,
where each row vector represents the speaker embedding cen-
troid referred to the one hot label yb. In this way, we propose
the long short term speaker loss (LSTSL) based on the long-
term speaker embedding centroids as the following equation:

LLSTSL = ‖S(YO(t)� −YY�‖2F
= ‖SO(t)�Y� −YY�‖2F
=

∑

i,j

yi=yj

(cos (ot
i, sj)− 1)2 +

∑

i,j

yi �=yj

(cos (ot
i, sj)− 0)2

(4)

where ‖·‖2F denotes the squared Frobenius norm. It is noted that

the long short term speaker affinity matrix G = SO(t)�Y�

indicates the cosine similarity between speaker embedding cen-
troids and speaker embeddings, as shown in fig 1. Moreover, the
first term in Eq. 4 is to increase the intra-speaker compactness.

The second term means to pull the cosine similarity between
speaker embedding centroids and other speaker embeddings to
0.

Compared with the training pair construction strategy, the
updatable speaker embedding centroid learning algorithm iter-
atively assembles embeddings of all training utterances from
a speaker to its centroid. The speaker centroid has the po-
tential to be more robust and discriminative than randomly
constructed pairs. Besides, LSTSL additionally constrains the
intra-speaker centroid variance using speaker identity informa-
tion, which makes the optimization process more stable. Com-
pared to the AL [12], LSTSL inherits the advantage of AL that
not relies on pair selection strategy, which makes the training
process more efficient and convenient. Meanwhile, LSTSL bal-
ances the short-term centroids and long-term centroids by a con-
trollable weight. In this way, the weight of the speaker cen-
troids that learned in the early stage of network optimization
decreases exponentially through iterations. With the increasing
of iterations and updates, the long-term speaker centroids will
be more reliable and robust. Different from center loss [14],
which only pulls the embeddings from the same speaker close
to their centers, LSTSL simultaneously enlarges the inter-class
differences and reduces the intra-class variations of the learned
embeddings. In comparison with Generalized End-to-End Loss
(GE2E) [15], which uses mini-batch that consists of a specific
number of speakers and utterances, the LSTSL takes the ran-
domly composed mini-batch data as input, which makes the
training process more flexible.

4. Experiment and analysis
4.1. Dataset

In our experiments, VoxCeleb [8, 9] dataset is used to investi-
gate the effectiveness of the SV systems, respectively. We adopt
the same strategies as [9]. Specifically, the VoxCeleb1 dev and
VoxCeleb2 are used as training set. The VoxCeleb1-E is used to
evaluate the performance of our system.

4.2. Implementation details

In order to compare experimental results equitably, we decide
to make our experimental settings consistent with those of base-
lines [21], except for the loss functions.

Network structure: The network is modified from the original
x-vector [13]. To be specific, a 5-layer TDNN is used to pro-
duce frame-level features. Followed [5, 21], the kernel size for
each layer is [5,5,7,1,1] without dilation. The output of the last
hidden layer is extracted as the segment-level speaker embed-
ding.

Features: The acoustic features are MFCCs with a frame length
of 25ms. Mean-normalization is used in each feature dimension
of the MFCCs. Moreover, an energy-based voice active detec-
tion (VAD) is used to detect speech frames. To increase the
diversity of the training data, we augment the training data us-
ing reverberation and additive noises from MUSAN [22] and
RIR [23], respectively.

Training: Our system is optimized by stochastic gradient
descent(SGD), where the initial learning rate is 0.01. L2-
regularization is added to prevent overfitting during the training.

Metric: Equal error rate (EER) and minimum detection cost
function (minDCF) are used to evaluate the system perfor-
mance. We use the same value as [8], where the target prob-
ability Ptar is 0.01, Cfa and Cfr has the same weight of 1.0.
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Table 1: Results for speaker verification evaluated on VoxCeleb1-E dataset.

Front-end model Loss function EER(%) minDCF
ResNet50 [9] contrastive loss 4.19 N/R
R-MSA(3-4) [16] DALoss-C 4.09 0.458
ResNet-34-SE [17] AS-softmax 3.10 N/R
ResNet-50 [18] EAM-softmax 2.94 0.278
ResNet [19] L2-softmax 2.38 N/R
x-vector(DDB) [20] softmax loss 2.31 0.268
x-vector[5] AMSoftmax+MHE 2.00 N/R

x-vector Softmax loss 3.28 0.335
x-vector(ours) LSTSL 1.98 0.189

Table 2: Comparison of the proposed LSTSL with different
state-of-the-art loss functions on VoxCeleb1-E dataset.

System EER(%)
x-vector + Softmax 3.28
x-vector + Asoftmax 2.06
x-vector + AMSoftmax 2.25
x-vector + ArcSoftmax 2.31
x-vector + LMCL 2.19

x-vector + LSTSL(α = 0) 2.34
x-vector + LSTSL(α = 0.3) 2.09
x-vector + LSTSL(α = 0.5) 1.98
x-vector + LSTSL(α = 0.7) 2.04

4.3. Comparison with state-of-the-art loss functions

The experimental results on VoxCeleb1-E are listed in Tables 1.
With the same x-vector feature extractor, the x-vector+LSTSL
outperforms the x-vecor+softmax by a relative 41.46% EER
reduction (1.98 v.s. 3.28). This is mainly because the opti-
mization of LSTSL focuses continuously on the compression
of intra-speaker variation and difference of inter-speaker vari-
ation, simultaneously. It also outperforms the state-of-the-art
AMSoftmax with MHE loss [5]. This suggests that optimized
by LSTSL, the x-vector feature extractor can generate more dis-
criminative speaker embeddings.

4.4. Effects of hyperparameter

Besides the softmax loss, we also compare the performance
of the proposed LSTSL with the state-of-the-art loss functions.
For additive angular margin softmax (Arcsoftmax) [24] and ad-
ditive margin softmax loss (AMsoftmax) [25], according to the
best hyperparameters setting discribed in [5], we set m = 0.25
and m = 0.2, respectively. For large margin cosine loss
(LMSL) [26] the hyperparameters m is set to 0.35. For AM-
Softmax, we set m = 2. We adopted the cosine similarity as
backend for all comparison systems.

The results are shown in Table 2. Compared to the Soft-
max loss, all other loss functions achieve significant perfor-
mance gains, which demonstrates the effectiveness of these loss
functions in capturing discriminative speaker embeddings. The
weight α plays an important role to balance the short-term and
long-term update ratio. It is noted that the performance with
α > 0 is much better than that with α = 0. This is because
that the short-term speaker embedding centroids only focuses
on the discriminating between the speaker centroids within a
batch data instead of the all training data. In addition, if there is
only one speech segment for each speaker in a batch, the local
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Figure 2: DET curves for different speaker embedding systems
on VoxCeleb1-E.

loss will be reduced to standard affinity loss, which will greatly
influence the intra-speaker variance. When α is set to 0.5, we
achieve the lowest EER (1.98%) among all the systems. The
DET curves of the comparison systems are plotted in Fig. 2. As
we can see from the figure, the proposed LSTSL based system
exhibits the best performance at most points.

5. Conclusions

In this paper, we propose a novel loss function, named long
short term speaker loss (LSTSL) for end-to-end speaker ver-
ification. The optimization process is based on the compari-
son between iteratively updated speaker embedding centroids
and samples, which is more robust and discriminative than ran-
domly constructed pairs. It is noted that unlike center loss that
only pulls the embeddings from the same speaker close to their
centers, LSTSL simultaneously enlarges the inter-speaker dif-
ferences and reduces the intra-speaker variations of the learned
embeddings. The experimental results on VoxCeleb dataset
demonstrate that the proposed loss function is comparable to
the state-of-the-art loss functions.
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