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Abstract
This paper adapts a StyleGAN model for speech generation
with minimal or no conditioning on text. StyleGAN is a multi-
scale convolutional GAN capable of hierarchically capturing
data structure and latent variation on multiple spatial (or tem-
poral) levels. The model has previously achieved impressive
results on facial image generation, and it is appealing to au-
dio applications due to similar multi-level structures present in
the data. In this paper, we train a StyleGAN to generate mel-
spectrograms on the Speech Commands dataset, which contains
spoken digits uttered by multiple speakers in varying acoustic
conditions. In a conditional setting our model is conditioned
on the digit identity, while learning the remaining data variation
remains an unsupervised task. We compare our model to the
current unsupervised state-of-the-art speech synthesis GAN ar-
chitecture, the WaveGAN, and show that the proposed model
outperforms according to numerical measures and subjective
evaluation by listening tests.
Index Terms: speech synthesis, generative adversarial net-
works, deep learning

1. Introduction
Speech synthesis using neural networks has seen rapid advance-
ments in recent years, and deep learning is a fundamental com-
ponent for building state-of-the-art text-to-speech (TTS) appli-
cations [1]. A major factor in these improvements has been
the adoption of generative models, such as WaveNet [2]. Con-
versely, speech data is interesting for benchmarking the per-
formance of generative models, as it contains both determinis-
tic structure and stochastic variation at multiple levels, ranging
from utterance, word and phoneme level all the way to short-
time segmental signal characteristics.

Generative adversarial networks (GANs) [3] have attracted
enormous research attention since their introduction and have
since achieved high synthesis quality in the image domain
[4, 5]. In the audio and speech domain, research on GANs for
unconditional (or weakly conditioned) synthesis tasks has been
fairly limited. Convolutional GAN has demonstrated a capa-
bility to synthesize various raw audio sounds (WaveGAN) [6],
although at limited quality, while [7] applied GANs on pitch-
conditioned instrument sound synthesis.

Meanwhile in text-to-speech synthesis, GANs have been
applied to the two sub-problems that constitute the current state-
of-the-art: first, an acoustic model learns a mapping from a text
sequence to acoustic features (i.e., mel-spectrogram in [1]), and
second, a waveform generator model maps the acoustic features
to a speech waveform. For the acoustic modeling task, adver-
sarial training has been used as an auxiliary objective alongside
conventional regression [8, 9] or as a generative post-filter to
add stochasticity to regression-based predictions [10]. GAN-
based waveform synthesis models that are capable of fast par-
allel inference have recently been proposed as alternative to au-
toregressive WaveNets for the latter task [11, 12, 13]. However,

all these approaches use strong conditioning that is either triv-
ially aligned to the generated data or relies on external systems
for alignment. Furthermore, they typically combine adversarial
training with a regression task, which makes it difficult to assess
the GAN performance in isolation.

In this work, we propose a GAN-based approach for gener-
ating mel-spectrograms of spoken digits from the speech com-
mands dataset [14] using only a global conditioning on the digit
identity and a purely adversarial training objective. In addi-
tion to the labeled variation of digits, the data contains a large
amount of unlabelled variation in terms of different speakers
and acoustic environments. This makes the dataset interesting
for evaluating GANs ability of capturing the variation in an un-
supervised manner. On the other hand, the task is connected to
TTS acoustic modeling, and the present research takes a first
step toward building a purely GAN-based acoustic model. The
appeal of GAN for acoustic modeling includes not only parallel
inference, but also the potential to capture and recreate non-
annotated variation in the data.

The proposed architecture is a conditional version of the
style-based generator architecture for generative adversarial
networks (StyleGAN) [15]. Experimental results show that the
proposed method outperforms a DCGAN baseline in various
objective metrics, as well as subjective naturalness evaluation
by listening tests.

2. Model architecture
We train a StyleGAN model to generate mel-spectrograms [16],
which are commonly used to represent audio signals (see Fig. 2
for illustration). Two variants of the model are presented: first,
without any labeled conditioning, and second, a conditional
model which receives the spoken utterance contents as an ad-
ditional input. Our GAN model follows the design of the origi-
nal StyleGAN with a few differences. The generation starts by
sampling a random latent variable z ∼ N(0, I) from the nor-
mal distribution. Optionally, z is appended with a known con-
ditioning vector c and transformed with a multilayer perceptron
network (a mapping network f ) to produce a latent code

w = f(z, c) .

The additional input of the mapping network is the learned em-
bedding of the word (digit class in this paper) that needs to be
generated. The mapping network consists of an eight-layer fully
connected network with the leaky ReLu activation functions and
latent code normalization (normalization is done by dividing the
latent code by the standard deviation computed from its ele-
ments). Vector c is simply used as an extra input to each of the
hidden layers of the mapping network [17] (see Fig. 1).

The latent code w is used to modulate the generation pro-
cess done by the synthesis network which is a convolutional
network that transforms a constant 4 × 4 map with 128 chan-
nels into a 128 × 128 mel-spectrogram. Similarly to the orig-
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Figure 1: The proposed GAN architecture for limited-length au-
dio generation. Like in the original StyleGAN, A is a learned
affine transformation and B is a learned per-channel scaling
factor, AdaIn is an adaptive instance normalization layer.

inal StyleGAN, the synthesis network consists of several con-
volutional blocks that now operate at different time-frequency
scales. Each block contains an upsampling layer, two convo-
lutional 3 × 3 layers, and two adaptive instance normalization
layers:

AdaIN(xi,y) = ys,i
xi − µ(xi)

σ(xi)
+ yb,i, (1)

where xi is the i-th feature map of the input, µ(xi) and σ(xi)
are the mean and standard deviation computed from xi, and
ys,i, yb,i are the inputs controlling the normalization process.
The style vectors y = (ys,yb) are computed using learned
affine transformations of the latent codes w (blocks A in the fig-
ure). To generate extra stochastic details, each block of the syn-
thesis network contains an independent per-layer noise source,
which is a single-channel Gaussian noise image broadcasted to
match all the channels using learned scaling factors (blocks B in
Fig. 1). In the generation process during training, we also use a
style-mixing regularization proposed in [15]: blocks in the syn-
thesis network derives their style vector y from two different
realization of z.

Our discriminator is formed of several repetitive blocks
as well. Each block contains two convolutional layers with
3× 3 kernels and a downsampling layer. The final block in the
discriminator starts with a mini-batch standard deviation layer
which is followed by a convolution layer and two linear layers.
The first linear layer has the leaky ReLu activation function and
the second one is plain linear.

We enhance the discriminator by providing it with the
information about the desired class of the generated mel-
spectrogram. We do this by concatenating the learned embed-
ding of the desired class with intermediate feature maps pro-
duced at the beginning of each discriminator block (see Fig-
ure 1). The upsampling and downsampling layers are imple-

Figure 2: Mel-spectrogram of real utterances (left) and mel-
spectrograms generated conditionally on the word (right). The
first row contains examples of word “zero” and the second row
contains examples of word “four”.

mented as it was done in the original StyleGAN model. All
convolution layers use leaky ReLu activations with a leak factor
0.2 both in the discriminator and the generator.

3. Experimental setup
3.1. Speech commands dataset

To train the model, we used the Speech Commands dataset [14].
The dataset consists of 105,829 utterances of 35 short common
words as a one-second or less WAVE format files. The sound
samples have been uttered by a large variety of different speak-
ers in different acoustic environments, and the data typically
includes only a few samples per speaker. All samples in the
dataset have been quality controlled by rejecting a sample if a
human listener could not tell what word was being spoken, or
it sounded like an incorrect word. We decided to use a sub-
set of the dataset to limit the scope of the problem and focused
on learning the digits from zero to nine (18,620 samples). The
dataset uses a 16 kHz sample rate.

3.2. Conversion between audio and mel-spectrograms

To compute mel-spectrograms from raw audio, we first gener-
ate the linear-frequency spectrogram with the short-time Fourier
transform (STFT), then apply a mel-filterbank transformation to
map the magnitudes to a mel scale, and finally convert the re-
sulting mel-spectrogram to a decibel scale via a logarithm. For
the STFT, we use a 50 ms frame size, 12.5 ms frame hop, and
the Hann window function. The mel filterbank consists of 128
filters spanning from 125 Hz to 7.6 kHz, and the filterbank out-
put magnitudes are clipped to a minimum value of 0.01 in order
to limit the dynamic range in the logarithmic domain and then
compressed to log dynamic range.
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For waveform generation from the mel-spectrogram, we
first invert the logarithm and apply a mel filterbank pseudoin-
verse transform to obtain a linear scale magnitude spectro-
gram, followed by the Griffin-Lim [18] algorithm to gener-
ate the sound samples. Although neural waveform generation
methods can result in higher synthesis quality, we opt to use
this well-known signal processing method to focus on the mel-
spectrogram synthesis performance and exclude potential inter-
action effects in a fully neural pipeline.

3.3. Details of model training

The audio files were first transformed into mel-spectrograms
to create the training data for the StyleGAN. The StyleGAN
was trained with many design choices borrowed from [15]. We
used progressive growing to start generating mel-spectrograms
at resolution 8× 8 and gradually growing the size of the gener-
ated mel-spectrograms to 128 × 128 [4]. The lower-resolution
mel-spectrograms were generated by bilinear interpolation of
the 128x128 size melspectrograms. The mini-batch size was de-
creased during the progressive growing to maintain an approx-
imately constant tensor volume in network activations through-
out the training. We start with the mini-batch size of 256 for
8 × 8 resolution and halve the mini-batch size after we intro-
duce a new higher-resolution layer until we reach the mini-
batch size of 32 for the final 128 × 128 resolution. Due to the
variable batch size, training progress is measured in samples-
introduced-to-the-network instead of epochs or minibatch itera-
tions. During progressive growing, we introduce 200,000 mel-
spectrograms while fading in a new layer, and train the network
for another 200,000 samples after the layer has been fully faded
in. After progressive growing is finished, we train the network
until 4.05M mel-spectrograms have been introduced to the net-
work in total. This takes about three days on one NVIDIA Tesla
V100 GPU.

We trained the StyleGAN using the WGAN-GP loss [19]
with various modifications proposed in [4]. The discrimina-
tor and generator were optimized using minibatch updates at
equal update schedules (i.e., the discriminator is updated once
for each update of the generator). Additionally, we included a
regularization loss term on the mean-squared discriminator ac-
tivations on the real data to prevent the training from engaging
in a “magnitude race” described in [4]. Specifically, we used
an extra term εEx∈real[D(x)2] in the discriminator loss which
prevents a magnitude drift of the discriminator output D(x) (ε
was set to 0.001).

All weights in convolutional, fully-connected, and affine
transform layers were initialized with values drawn randomly
from the standard normal distribution. All bias terms and the
constant 4 × 4 feature map in the synthesis network were ini-
tialized with zeros. We used the Adam optimizer [20] with α
= 0.001, β1 = 0.0, β2 = 0.99, and ε = 10−8. However, for the
final 128 × 128 resolution, we increased the learning rate to
0.0015. Following [15], we also reduced the learning rate for
the mapping net by two orders of magnitude. We did not use an
exponential running average for the weights of the generator.

4. Results
We evaluate the quality of the generated audio samples using
two objective metrics: the first method builds upon the Fréchet
inception distance [21] and the second method evaluates the er-
ror rates of the output of the Deep Speech automatic speech
recognition system [22, 23] run on the generated audio samples.

Table 1: Fréchet distance for various generator designs (the
smaller the better).

Model Label Progressive Style-mix FD
cond. growing regul.

StyleGAN-U1 no no no 49.0
StyleGAN-U2 no yes no 27.1
StyleGAN-C1 yes yes no 41.6
StyleGAN-C2 yes yes yes 31.3

Furthermore, we conducted a MOS listening test to evaluate a
the subjective quality of the generated samples.

4.1. Evaluation with Fréchet distance

Fréchet distance (FD) [21] is commonly used in GAN research
to measure the quality and variation of generated samples by
examining the activation statistics of a pre-trained classifier
model. In image generation applications, an Inception net clas-
sifier is typically used [24], but we found that simply viewing
spectrograms as monochrome images provided inconsistent re-
sults. Instead, we use two domain-specific classifiers to score
the generated samples in terms of content and speaker variation.

To score the generated samples in terms of content, we
trained a classifier on the spoken digits dataset to recognize the
ten different digit classes from mel-spectrograms. The archi-
tecture of the classifier was similar to the one used in [6] to
classify melspectrograms to compute the inception score. We
modified that architecture by adding an extra average-pooling
layer to produce the activations used for computing the Fréchet
distance (FD) score. The classifier achieved a 97% accuracy
on the test set of 2552 samples after training with 150,000 mel-
spectrograms. The FD score was computed as

FD = ‖mr −mg‖22 + Tr(Cr +Cg − 2(CrCg)
1/2), (2)

where Tr() denotes the trace of a matrix, mr , Cr are the mean
and covariance matrix computed from the classifier activations
on real data samples, and mg , Cg are the same statistics com-
puted from the classifier activations on the generated data.

Table 1 presents FD scores computed using the described
digit-classifier for different designs of the StyleGAN generator.
The scores were calculated multiple times during the course of
training using the training set (18,620 mel-spectrograms). The
lowest values of the FD scores are reported in Table 1. We can
clearly see that progressive growing and style-mixing regular-
ization improve the FD score. Label conditioning slightly de-
creases the quality of the generated mel-spectrograms but gives
a way to control the generation process.

To score the generated samples in terms of speaker varia-
tion, we computed the FD score (2) using the activations of a
pre-trained speaker embedding model from [25]. The motiva-
tion for using this kind of embeddings was to provide means for
measuring variation of speaker identity in the generated sam-
ples regardless of the contents (conditioning input c) of the ut-
terances. This speaker information was unlabeled in the present
experiments, but the generative model should ideally learn to
embed such variability in the latent code z. The results are pre-
sented in Table 2. We can see that the StyleGAN model outper-
forms the comparison WaveGAN [6] method.

4.2. Evaluation with the Deep Speech recognizer

FD is a measure which assesses the quality of unconditional
generation of mel-spectrograms. To evaluate the quality of
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Table 2: Fréchet distance in speaker embedding space (the
smaller the better).

Method FD
Griffin-Lim reconstructed 0.11
StyleGAN (proposed) 0.24
WaveGAN 0.33

Total CER scores

Real StyleGAN-C2 StyleGAN-U2 WaveGAN
0

20

40

60

80

100

Figure 3: The violin plot of the total CER scores of the (gener-
ated) audio samples converted into text with the Deep Speech
recognizer (the smaller the better). The thick black line repre-
sents the median CER scores.

the conditional generation, we convert the generated mel-
spectrograms into audio with the Griffin-Lim transform and
then attempt to decode the audio to text using a pre-trained
Deep Speech end-to-end speech recognition system [22, 23].
Thus, the Deep Speech recognizer performance acts as a proxy
for intelligibility evaluation. In this case, the metric for condi-
tional generation quality is the character error rate (CER) [26]
between the desired sequence of characters and the sequence
produced by the Deep Speech recognizer.

We generated 500 samples for each digit with each assessed
generator design and label the generated samples with 10 digit
classes utilizing the classifier introduced in Section 4.1. For
conditionally-generated samples we also used labels produced
by the classifier instead of the ones used in the generation pro-
cess. As the baseline, we also computed the CER scores for ran-
dom samples from the training data. In addition, we computed
the scores for the samples generated by the current state-of-the-
art GAN in waveform generation, the WaveGAN [6], using a
pre-trained model provided by the authors [27].

The results are presented in Fig. 3. We can see that Style-
GAN models achieved lower CER scores compared to the
WaveGAN. In addition, the StyleGAN model with label con-
ditioning outperformed the one without conditioning.

4.3. Listening test

For subjective quality evaluation, we conducted a listening test
on the Amazon Mechanical Turk crowdsourcing platform (lim-
iting workers by location to the English speaking countries).
The listeners were presented with samples from each system
under evaluation and asked to rate the naturalness of the sam-
ple on a five-point absolute category rating scale ranging from 1
(Bad) to 5 (Excellent). Four systems were included in the com-
parison: “Natural” samples are unprocessed utterances from the
dataset, while “Re-synthesis” samples are synthesized from un-
modified mel-spectrograms of natural samples. This represents
the upper limit in quality using the present waveform synthesis

Natural Re-synthesis StyleGAN WaveGAN
1

2

3

4

5
5
4
3
2
1

Figure 4: Naturalness mean opinion score (MOS) ratings with
95% confidence intervals. Stacked distribution histograms for
the ratings are shown in the background.

method.

The tests were split into eight batches of 100 test cases, and
each batch was evaluated by five individual workers. A total
number of 3946 valid evaluations was collected in the listen-
ing test. Samples were drawn randomly for each system, but
balanced between different digit classes. Figure 4 shows mean
opinion scores (MOS) for naturalness with t-statistic based 95%
confidence intervals Bonferroni corrected for multiple com-
parisons. Stacked histograms for the answer distributions are
shown in the background. In the plot, the ratings have been
averaged over listeners and digits. The results show that the
proposed method StyleGAN-C2 outperforms WaveGAN.

5. Conclusion

In this paper, we adapted the recently developed StyleGAN
model for speech generation with minimal or no conditioning
on text. The proposed model produced higher-quality audio
samples and captured better the data distribution compared to
previous GAN-based speech generation models. There are two
clear obstacles for the use of the presented model for generic
text-to-speech mapping, but these are left as future work. First,
the present model uses static conditioning, whereas a TTS sys-
tem input is typically a sequence of characters (or phonemes).
A natural extension would be to include a sequence encoder
similar to Tacotron [1], perhaps combined with a convolutional
self-attention mechanism [28]. Second, the synthesis network
currently generates a fixed-length spectrogram output. Intro-
ducing a duration prediction model to generate the synthesis
network input feature map could allow varying output lengths,
as the network itself is otherwise fully convolutional. Another
interesting direction is to move towards end-to-end training and
eliminate the intermediate step of conversion between raw audio
and mel-spectograms, which may potentially further improve
the quality of the generated samples.

Source code and audio samples are available at https:
//github.com/kapalk/cStyleGAN
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