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Abstract

State-of-the-art music detection systems, whose aim is to dis-
tinguish whether or not music is present in an audio signal, rely
mainly on deep learning approaches. However, these kind of
solutions are strongly dependent on the amount of data they
were trained on. In this paper, we introduce the area under
the ROC curve (AUC) and partial AUC (pAUC) optimisation
techniques, recently developed for neural networks, into the
music detection task, seeking to overcome the issues derived
from data limitation. Using recurrent neural networks as the
main element in the system and with a limited training set of
around 20 hours of audio, we explore different approximations
to threshold-independent training objectives. Furthermore, we
propose a novel training objective based on the decomposition
of the area under the ROC curve as the sum of two partial ar-
eas under the ROC curve. Experimental results show that par-
tial AUC optimisation can improve the performance of music
detection systems significantly compared to traditional training
criteria such as cross entropy.

Index Terms: music detection, recurrent neural networks, par-
tial AUC optimisation, limited training data

1. Introduction

In the last few years, we have observed how audiovisual reposi-
tories are becoming larger and larger, making the manual anno-
tation and tagging unfeasible in some cases. That is the reason
why automatic systems that can extract information in an ac-
curate way are becoming significantly relevant. In this paper,
we focus on the music detection task, whose aim is to deter-
mine whether or not music is present in an audio excerpt. Music
detection is especially relevant in the broadcast domain, where
music is usually mixed with speech and other type of non-music
sounds. Besides from the automatic indexing and retrieval of in-
formation based on the audio content, music detection plays an
important role in broadcast emissions in the context of monitor-
ing for copyright management [1] [2].

Traditionally, statistical approaches were applied to the mu-
sic detection task. In [3], support vector machines were used to
separate speech and music in radiophonic streams. The same
objective of discriminating speech and music was solved in [4]
using multi-stage decision trees. The factor analysis technique
was applied in [5] to detect simultaneously speech, music and
noise with relevant results for broadcast domain data.

Currently, state of the art music detection systems are
mainly based on deep learning approaches. In [6], authors ex-
plore the use of convolutional and recurrent neural networks
for both music and speech detection applied to a large audio
dataset. A Mel-scale kernel is proposed in [7] to be used in a
convolutional neural network for broadcast music detection. A
semi-supervised approach is presented in [8], where convolu-
tional neural networks are used to classify speech and music.

Copyright © 2020 ISCA

3067

Our previous experience in audio segmentation [9][10] showed
the feasibility of recurrent neural networks for multiclass seg-
mentation concerning speech, music and noise. The set of tech-
nological evaluations MIREX [11] proposed in 2018 a music
detection task under different conditions. The best performing
system [12] was based on a convolutional neural network with
Mel spectrograms as input.

One of the main disadvantages of deep learning systems is
that their performance is strongly dependent on the data they
were trained on. In this paper, we aim to overcome this issue
when using a limited amount of training data by introducing the
recently presented area under the ROC curve optimisation tech-
niques for neural networks. Recent studies that are discussed in
the following sections have proved that they outperform tradi-
tional training objectives such as cross entropy in other detec-
tion tasks.

The remainder of the paper is organised as follows: Section
2 introduces the AUC and pAUC optimisation framework that
we propose for the music detection task. Section 3 presents the
experimental setup, describing the neural network architecture,
the datasets considered and the metrics used in the evaluation.
In Section 4, we describe the results obtained for our music de-
tection system. Finally, a summary and the conclusions are pre-
sented in Section 5.

2. AUC and pAUC optimisation framework
2.1. Problem formulation

Suppose a dataset Il = {X,Y} where X = {z1,...,zn} is
the set of acoustic features with IV different examples, and Y =
{y1,...,yn } the music labels defining each of the elements in
X as music or non-music examples (1 or O respectively). The
neural network can be expressed then as a function fy : RP —
IR depending on a set of parameters 6§ and mapping the input
space of dimension D to a real number representing the music
score. The parameters 6 are estimated iteratively through the
backpropagation algorithm seeking to minimise (or maximise)
a metric given by a loss function L(fo(x;),y;) that measures
the difference (or similarity) between the neural network output
and the labels.

2.2. Area under the ROC curve optimisation

The receiver operating characteristic (ROC) curve is a well
known method to represent the performance of a detection sys-
tem. This curve plots false positive rates (FPR) versus true
positive rates (TPR) for all the possible detection thresholds.
Furthermore, the area under the ROC curve (AUC) measures
the area underneath the entire ROC curve, providing an aggre-
gate performance measure which is independent of the detec-
tion threshold. Depending on the desired behaviour, the detec-
tion threshold may be chosen differently. That is why it would
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be desirable to optimise the system for all the possible decision
thresholds, taking into account the trade-off between false pos-
itives and false negatives.

Several papers already proposed to directly optimise the
AUC for different applications with promising results [13][14].
Focusing on those using neural networks, an AUC optimisation
framework is adopted in [15] for the text-dependent speaker ver-
ification task. In [16], a deep learning based speech activity de-
tection system is trained with an AUC optimisation criterion.
To the best of our knowledge, this is the first approach to AUC
optimisation in the music detection task.

To compute the AUC metric two new subsets need to be
defined: ST = {fo(x;) Vo; € X|y; = 1}, which is the
neural network scores for the positives examples in X, and
ST = {fo(x:i)Va; € X|y; = 0} that represents the neural
network scores for the negatives examples in X. Cardinalities
of those sets are N and N~ respectively. Then, the AUC loss
can be defined as

Nt N—
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where 1(-) is equal to ‘1> whenever s;” > s; and ‘0’ otherwise.
This expression can be rewritten using the unit step function as

Nt N~
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In order to enable the backpropagation of the gradients, an
approximation must be done to obtain a differentiable function.
In our implementation, we adopt the expression proposed in
[15], that modifies the step function for a sigmoid function ac-
cording to

Nt N—
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where o (+) is the sigmoid function and § is an hyperparameter
that controls the slope of the sigmoid.

2.3. Partial AUC optimisation

The usefulness of AUC can be limited in some cases due to its
threshold invariance. If there are wide disparities in the cost
of false positives versus false negatives, it may be critical to
minimise one type of error. Furthermore, optimising the whole
ROC curve can be costly and, in some specific applications,
needless as the system is going to operate only in a certain area
of the ROC curve. The partial AUC (pAUC) overcomes these
issues evaluating the performance for a region of interest of FPR
values. It is formally defined as the area under the ROC curve
between two FPR values o and (. This metric is presented
schematically in Figure 1, with the grey area representing the
pAUC.

pAUC optimisation was firstly proposed in [17] for the
speaker verification task outperforming the current state-of-the-
art on the NIST 2016 SRE data. The hard negative mining
approach presented in [15] could also be interpreted as a par-
tial AUC solution that chooses the hardest examples for train-
ing. A more recent study [18] has compared both AUC and
pAUC training objectives to obtain speaker embeddings for
text-independent speaker verification. This work shows that
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Figure 1: Schematic representation of ROC curve and partial
AUC given o and .

pAUC training achieves better results than AUC training in most
cases.

Given the already defined S~ set, a new set S_ 5 must be
obtained constraining S™ to the range where the false positive
rate lies in the interval [a, 8]. This is done through the following
three main steps:

1. The interval [, 3] must be replaced for its integer equiv-

. . - n
alent, this is [, T&

cording to

ne =[aN"]+1,

]. with ng and n; computed ac-

n;=[BN"]. @5

2. Sort S™ in descending order
3. S, is selected as the set of samples ranked from the
top n, th to the n 4 th position of the sorted S~ set. This
resultsina setof length N_ s = ng —n, +1
Now, the partial AUC can be computed in a similar way to the
expression proposed in Eq. 3, but substituting the set of negative

examples S~ for the new set of constrained negative examples
S_ - This partial AUC is expressed as

1 N+ Nag
Lapave(a, B) = T Z Z a(é(s:r — Sgﬁj)) . (6)
af =1 j=1

2.4. AUC optimisation as sum of two partial AUCs

When computing the pAUC loss, a fraction of the training ex-
amples is discarded. This is done after sorting the S™ set, where
only a subset of the sorted set is used in training. If we suppose
a = 0 as done in [18], a fraction 1 — 3 of the examples are
consistently dropped in the training process. This fact could be
seen as a way of speeding up training because it is reducing the
number of operations per iteration. However, as we are dealing
with a limited training data scenario, we believe that it would be
interesting to incorporate those discarded examples in training
somehow.

Our idea to incorporate those examples in training is pre-
sented schematically in Figure 2. The proposed training objec-
tive decomposes the entire AUC as the sum of two partial AUC,
assuming the first one is using @ = 0 and the second one is
using 8 = 1. The parameter -y is introduced as the FPR point
that separates the area in two subareas. Then, our new training
objective can be computed as

@)

A scalar hyperparameter A is used for balancing both parts,
seeking to give more or less importance to the second pAUC
in training.

LaAUCSum('Yy )\) - LapAUC(Oy ’Y) + )‘LapAUC (77 1) .
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Figure 2: Schematic representation of ROC curve and our pro-
posed computation of AUC as the sum of two partial AUC de-
fined by the parameter .

3. Experimental setup
3.1. Neural network

In this work, the neural architecture is based on recurrent neu-
ral networks (RNN). We stack 2 bidirectional gated recurrent
units (GRU) [19] with 128 neurons each, followed by a linear
layer that performs the final classification. Adam optimiser is
used with a learning rate that decays exponentially from 103
to 10~* during the 20 epochs that data is presented to the neural
network. The hyperparameter 9, introduced in subsection 2.2
and used in the AUC based optimisation experiments, has a
fixed value of 10 seeking to obtain a shape close to the unit step
function, in a similar way as it is done in [15]. Training and
evaluation is done using limited length sequences (3 seconds,
300 frames) in order to limit the delay of dependencies to take
into account by the RNN. However, an output label is emitted
for every frame processed at the input.

Concerning feature extraction, inspired by our previous ex-
perience in audio segmentation tasks [9][10], we combine a
traditional set of perceptual features with some musical theory
motivated features. First, 128 log Mel filter bank energies are
extracted between 64 Hz and 8kHz. Additionally, they are com-
bined with chroma features [20], a projection of the entire spec-
trum into 12 bins representing the 12 distinct semitones of the
chromatic musical scale. Chroma features are extracted using
the openSMILE toolkit [21]. All features are computed every
10 ms using a 25 ms Hamming window. Before being concate-
nated, log Mel energies and chroma features are first normalised
to be in the range between 0 and 1.

This setup is fixed for all our experiments as our main goal
is not to evaluate this neural architecture compared to other pro-
posals, but to evaluate whether AUC and pAUC optimisation
can improve the performance of our music detection system
over traditional training objectives.

3.2. Data description

In order to perform our experiments we consider two differ-
ent datasets, one for training and another for testing. Both of
them correspond to the broadcast domain, coming from differ-
ent television emissions. In the following lines we describe the
two datasets:

« Train: we use the recently released OpenBMAT' dataset
[22] to train our music detection system. It contains 27
hours of television broadcast audio from different coun-
tries labelled by 3 annotators for the music detection
task. High inter-annotator agreements ratios were ob-
tained so, for training we only considered the labels from

'https://zenodo.org/record/33812494#
. XfNfDNmCFuU
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the first annotator. These labels contain a 51% of music
and a 49% of non-music. Furthermore, a 10% of the data
is reserved for training validation, so the total amount of
data used for training is around 24 hours. No prior data
picking is performed in any case; minibatches are sam-
pled randomly for the training dataset.

« Test: as test data we use the dataset® originally presented
in the paper “Automatic Music Detection in Television
Productions” [23]. It consists of around 9 hours of tele-
vision recordings from the Austrian national broadcast-
ing corporation that were manually labelled as music or
non-music. There is a great variety of genres, ranging
from soap operas to documentaries or talk shows. The
data distribution is close to be equally distributed, with
42% of the time being music and 58% of the time being
non-music.

All the audios have been downsampled to 16 kHz and
mixed down to a single channel. Both datasets can be down-
loaded for research purposes upon request to their respective
authors.

3.3. Evaluation metrics

The music detection task can be interpreted as a binary classi-
fication task, so traditional metrics for binary tasks are applica-
ble. In this paper we evaluate the results of our system using
the AUC metric, which measures the area underneath the en-
tire ROC curve, and the equal error rate (EER), the error rate at
which the false negative rate and false positve rate is equal. We
also present the complete ROC curve with true positive rates
versus false positive rates for the best systems presented in the
paper.

Additionally, we report in our results recall and F; measure
for a system using a threshold so that precision = 0.90, with
precision, recall and F1 measure computed according to

lp tp

Prec = ———, Rec = ———, 8,9
tp+ fp tp+ fn (8.9
Prec - Rec
=2— 10

Prec + Rec’ 10

where tp is the number of true positive predictions, fp is the
number of false positive predictions and fn is the number of
false negative predictions. All metrics are computed at frame
level and without collar on the full test data presented in the
previous subsection.

4. Results

As the starting point of our experimentation, our aim was to ob-
tain a baseline system so that our further results could be com-
pared. With the experimental framework described in Section 3,
we trained a neural network using the well-known cross entropy
loss. This system serves as a point of comparison for our AUC
and pAUC optimisation experiments. In Table 1, we compare
this baseline with a system trained using the aAUC training cri-
terion. It can be observed that, by shifting from traditional loss
functions, such as cross entropy, to the aAUC criterion, a sig-
nificant 4.30% relative improvement can be observed in terms
of AUC and a 19.11% relative improvement in terms of EER.
Once it has been proved that AUC optimisation can im-
prove music detection performance in a limited data scenario

2http://www.seyerlehner.info/index.php?p=1_3_
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Table 1: AUC, EER, recall and F1 measure (both computed for
a system with precision fixed at 0.90) on test data for the mu-
sic detection system trained using the aAUC training criterion
compared to a cross entropy based training.

Training criterion ‘ AUC(%) EER(%) ‘ Rec F,
Cross entropy 87.02 21.40 045 0.60
aAUC 90.76 17.31 0.65 0.75

Table 2: AUC, EER, recall and F1 measure (both computed for
a system with precision fixed at 0.90) on test data for the mu-
sic detection system trained using the apAUC training objective
and different values of o and 3

apAUC optimisation | AUC(%) EER(%) | Rec F;
a=0 =025 87.21 20.85 0.54 0.68
a=0 =05 90.34 17.53 0.64 0.75
a=0 pB=0.75 91.88 16.03 0.71 0.79

a=0.25 =05 86.95 21.18 0.40 0.55

a=0.25 =0.75 88.79 19.56 0.55 0.64

a=025 =1 86.83 21.69 042 0.57

with this first experiment, in the next set of experiments we ex-
plore a more generalised training criterion, this is the apAUC
explained previously. It can be easily observed that the aAUC
criterion is a specific case of the apAUC criterion that uses pa-
rameters = 0 and 8 = 1. Results using the pAUC training
criterion are presented in Table 2. It can be observed that two
different parameter setups were assessed. The first set of pa-
rameters uses « = 0, in a similar way as done in [18]. This
configuration is equivalent to discard the fraction 1 — /3 of non-
target examples with the lower scores, therefore the ones that
are easier to classify. The best system performance is achieved
for 8 = 0.75, with evaluation metrics even better than the ones
obtained for the aAUC training objective. This results in a rel-
ative improvement compared to the baseline system of 5.60%
in terms of AUC and 25.10% in terms of EER. The setup using
a = 0.25 is presented for comparison purposes. In this case the
non-target examples with the higher scores (harder to classify)
are discarded for training. It can be clearly observed that this
setup underperforms the one with a = 0, with AUC and EER
values which are close to the baseline system.

Our final experiment explored the proposed aAUCsum
training criterion that separates the AUC optimisation in two
partial AUCs. The results obtained are presented in Table 3.
Gamma value was chosen to be 0.75 because it obtained the
best performance in the pAUC optimisation experiments. The
parameter setup slightly outperforms the apAUC training ob-
jective, however, experimental results suggest that incorporat-
ing the discarded examples in training does not lead to a con-
sistent performance increment. This effect may be motivated
by the fact that the hardest examples could be sufficient for the
neural network to learn an effective classification mapping. It is
also remarkable that, our proposed aAUCsum criterion achieves
state of the art performance, with an AUC and EER better than
the aAUC training criterion in all cases. This results matches
with previous studies that suggest that pAUC optimisation tech-
niques outperform AUC techniques.

Finally, Figure 3 presents the ROC curves for the different
systems trained in this paper using the best parameter config-
uration obtained. Again, it can be observed that the baseline
system trained using cross entropy criterion is significantly be-
low in performance compared to the other systems presented in
this paper. Furthermore, a similar ROC curve is obtained for the

3070

Table 3: AUC, EER, recall and F1 measure (both computed for
a system with precision fixed at 0.90) on test data for the music
detection system trained using the aAUCsum training objective,
v = 0.75 and different values of \.

aAUCsum optimisation | AUC(%) EER(%)| Rec F,
vy=0.75 A=1 91.78 16.78 0.70  0.79
v=0.75 A=0.1 91.31 16.59 0.68 0.77
v=0.75 A=0.01 91.45 16.20 0.69 0.78
~=0.75 A = 0.001 92.02 15.78 0.72 0.80
v=0.75 A = 0.0001 91.31 16.78 0.70  0.79
100 ROC curves for music detection
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Figure 3: ROC curve on the test data for the different training
objectives presented in the paper using the best parameter con-
figuration obtained (pAUC: o« = 0 and 8 = 0.75, AUCsum:
v = 0.75 and \ = 0.001)

apAUC and aAUCsum training objectives, both with a perfor-
mance better than the one obtained for the aAUC training.

5. Conclusions

In this paper, we have introduced the AUC and pAUC opti-
misation techniques into the music detection task, aiming to
overcome the issues derived from data limitations. We present
several approximations to threshold-independent loss functions,
using a system based on recurrent neural networks, and with a
limited training data set consisting only of around 20 hours of
audio.

Experimental results suggest that partial AUC training out-
performs traditional training objectives such as cross entropy.
In particular, we report a relative improvement close to 5.75%
in terms of AUC, and 26.26% in terms of EER when using our
proposed aAUCsum loss function. These results match with the
previously published studies that state that pAUC optimisation
techniques report better performance than AUC based optimi-
sation.
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