
Lip Graph Assisted Audio-Visual Speech Recognition Using Bidirectional
Synchronous Fusion

Hong Liu, Zhan Chen, Bing Yang

Key Laboratory of Machine Perception, Shenzhen Graduate School, Peking University, China
{hongliu, zhanchen cz}@pku.edu.cn, bingyang@sz.pku.edu.cn

Abstract
Current studies have shown that extracting representative visual
features and efficiently fusing audio and visual modalities are
vital for audio-visual speech recognition (AVSR), but these are
still challenging. To this end, we propose a lip graph assisted
AVSR method with bidirectional synchronous fusion. First,
a hybrid visual stream combines the image branch and graph
branch to capture discriminative visual features. Specially, the
lip graph exploits the natural and dynamic connections between
the lip key points to model the lip shape, and the temporal evo-
lution of the lip graph is captured by the graph convolutional
networks followed by bidirectional gated recurrent units. Sec-
ond, the hybrid visual stream is combined with the audio stream
by an attention-based bidirectional synchronous fusion which
allows bidirectional information interaction to resolve the asyn-
chrony between the two modalities during fusion. The experi-
mental results on LRW-BBC dataset show that our method out-
performs the end-to-end AVSR baseline method in both clean
and noisy conditions.
Index Terms: Audio-visual speech recognition, spatial-
temporal graph convolution, deep learning

1. Introduction
Audio-visual speech recognition (AVSR) has been investigated
intensively over the last few decades. It is inspired by human
bimodal speech perception which leverages not only acoustic
information but also visual information to reduce speech con-
fusion [1, 2]. Although acoustic signal carries most speech in-
formation, it is not reliable in the acoustic noisy environment.
In this case, introducing the visual information can help to im-
prove the performance of the speech recognition system, since
the visual information is not affected by acoustic noise [3, 4].

Many studies focus on visual feature extraction which di-
rectly affects the performance of the recognition system. In
earlier studies, transforms like principal component analysis
(PCA) [5] and discrete cosine transform (DCT) [6] were ap-
plied to the mouth region of interest (ROI) to extract visual
feature. With the development of deep learning, the tradi-
tional transforms are replaced by deep autoencoder [7], which
achieves a great improvement than the traditional transforms.
The adoption of CNNs such as VGG [8], ResNet [3] and
DenseNet [9] which are used to extract visual features from
the raw mouth images further improves the performance of sys-
tem and even outperforms the professional lip reader [8]. How-
ever, these appearance-based visual features which are used to
model characteristics of the mouth region exhibit greater sen-
sitivity to the environmental condition changes such as illumi-
nation, which limits the performance of the AVSR. The liter-
ature shows that the addition of extra visual information (e.g.
optical flow which provides complementary temporal visual in-
formation and shape-based features which extract geometrical

measurements of the lip) to appearance-based features signifi-
cantly improves lipreading performance [10, 11]. Wang et al.
[12] used extra 3D lip information obtained from Kinect to im-
prove the performance of multimodal speech recognition. Tao
et al. [13] combined six distance features which are used to de-
scribe the shape of mouth with the appearance-based features
to improve the robust against speaker variability. Wang et al.
[14] concatenated the appearance-based features with the op-
tical flow which was used to capture lip motion information,
and this method significantly improved the performance. Al-
though, the distance features and the optical flow improve the
performance of the appearance-based features, more represen-
tative visual features still need to be explored.

The fusion strategy adopted to fuse the information of audio
and visual modalities is also crucial to AVSR and can be broadly
categorized into two kinds, namely feature fusion [3, 15, 16]
and decision fusion [12, 17, 18]. Feature fusion is a commonly
used approach since the feature fusion benefits from the corre-
lation of modalities at the feature level [19]. The feature fusion
faces the problem that the audio stream and visual stream may
be not synchronized [19, 20]. The asynchrony between speech
and visual clues involves the anticipatory coarticulation which
refers to one gesture beginning in advance and the preserva-
tory coarticulation which refers to a gesture continues after [19].
The time-variant phase between the two modalities can be hun-
dreds of milliseconds [20], which degrades the speech recogni-
tion performance. To solve the asynchronous problem between
the two modalities. Bregler and Konig [21] assumed that lip
movements preceded speech and the best synchronization was
a shift of 120 milliseconds. However, the time-variant phase
between two streams is obviously uncertain, and it is closely re-
lated to the words. Tao et al. [22] proposed an attention based
data driven alignment neural network to generate the aligned vi-
sual feature according to audio feature, which means the align-
ment is highly related to the reliability of acoustic information.
Sterpu et al. [23] proposed an attention-based audio-visual fu-
sion strategy which allows the acoustic modality to learn cor-
relation from the visual modality. Despite these methods have
achieved desired results, the design of unidirectional informa-
tion interaction causes the system to over-rely on one modality.

In order to deal with the above two challenges, we propose
a novel lip graph assisted AVSR method which uses the bidi-
rectional synchronous fusion strategy. The adopted baseline is
the end-to-end AVSR method in [3], and we extend the baseline
method with two aspects. First, we add a graph branch in the vi-
sual stream. The graph branch uses the spatial-temporal graph
convolutional networks (ST-GCN) [24] followed by a 2-layer
bidirectional gated recurrent unit (BGRU) to extract shape-
based features in an end-to-end manner. The graph branch re-
gards the key points of the lip as a lip graph in a non-Euclidean
space with the key points as nodes and their natural connec-
tions in the mouth as edges, rather than independent feature
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points or distances. Thus, the graph branch can exploit the
relationships among the key points, and the relationships are
crucial for understanding visual speech. Second, we propose
an attention based bidirectional synchronous fusion to process
the asynchrony between the two modalities which is ignored
in [3]. The sync block allows bidirectional information inter-
action between the audio and visual modalities to explore the
correlation between the two modalities, which can synchronize
the two modalities and balance the dependence of system on the
two modalities. The experiments on LRW-BBC dataset show an
absolute improvement of 0.39% and 6.49% over the end-to-end
AVSR baseline method, at 20 dB and -5 dB, respectively.

2. Approach
The pipeline of the proposed AVSR method is shown in Figure
1. We use an audio stream to extract audio feature from the
acoustic signal and a hybrid visual stream to extract visual fea-
ture from visual signal. A bidirectional synchronous fusion is
applied to fuse the audio feature and visual feature.
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Figure 1: Overview of the proposed audio-visual speech recog-
nition method.

2.1. Audio Stream

As shown in Figure 1, the audio stream uses the same archi-
tecture as [3]. Audio features are extracted from the audio
waveforms by the ResNet-18, and divided into multiple frames.
In order to model the temporal dynamics of the audio, these
framed features are fed into a 2-layer BGRU which consists of
1024 cells in each layer. The output of the audio stream is the
extracted audio feature fa

o .

2.2. Hybrid Visual Stream

2.2.1. Image feature extraction

The image branch consists of a spatial-temporal convolution
followed by a 34-layer ResNet and a 2-layer BGRU. where the
spatial-temporal convolution is used to capture the short-term
temporal dynamics, and the ResNet and the 2-layer BGRU are
used to extract spatial features from the image sequences and
model the dynamics of the mouth region, respectively. The out-
put of the image branch is image feature fv

i .

2.2.2. Graph feature extraction

The graph branch aims to learn shape-based features of the lips
in an end-to-end manner. To the best of our knowledge, it is the
first end-to-end model which models the lip and extracts shape-
based features by learning both the key points and their relation-
ships. The key points and the relationships between them con-
stitute the lip graph with the key points as the nodes and their
connections as the edges. Then we apply ST-GCN together with
BGRUs to model the lip, since GCN is a general and effective
framework for learning representation of graph structured data
and various GCN variants have achieved the state-of-the-art re-
sults on many task [24, 25, 26].

ST-GCN consists of a series of the ST-GCN blocks. The il-
lustration of a ST-GCN block is shown in Figure 2. Each block
contains a spatial graph convolution (SGC) followed by a tem-
poral graph convolution (TGC), which extracts spatial and tem-
poral features alternatively.

SGC TGCBN
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BN
ReLU  

Lip graph

( , , , )inN C T V

( , , , )outN C T V ( , , / , )outN C T s V
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Figure 2: Illustration of the ST-GCN block. N , C, T , V denote
the mini-batch, channel, frames and nodes, separately.

The temporal graph convolution operation is similar to the
2D convolution and performs T × 1 filters on the lip graph se-
quences to capture short-term dynamic information of the lip
movement. T is the temporal size of the filters and is set to 5 in
our work.

The spatial graph convolution operation is the key compo-
nent in ST-GCN. We consider a lip graph as G = (V, E), where
V is the set of M nodes and E is the set of edges. The neighbor
set of a node vi is defined as N (vi) = {vj |d(vi, vj) ≤ D},
where d(vi, vj) is the minimum path length from vj to vi. A
graph labeling function L :→ {1, 2, ...K} is designed to assign
the labels {1, 2, ...K} to each graph node vi ∈ V , which can
partition the neighbor set N (vi) of node vi into a fixed num-
ber of K subsets. Figure 3(a) shows the uniform graph which
is the simplest and most straight forward graph, while K is set
to 1. The graph is suboptimal on our task as the local differ-
ential properties could be lost in this operation [24]. (b) shows
the shape graph which is modified by considering the shape of
the lips. Since we set D to 1 in this work, there are two differ-
ent weight vectors and they are capable of modeling the shape
transformation of the lip, and K is set to 2. (c) shows the lip
graph. The edges in lip graph represent not only the shape in-
formation but also the motion information, since the symmetric
nodes of the root node can represent the mouth opening and
closing and K is set to 3. Thus, in our work, we use the lip
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Figure 3: Graphical spatial dependencies between different
nodes. (a) Uniform graph: all nodes in a neighborhood has
the same label (red). (b) Shape graph: the neighboring nodes
are divided into two classes which are the root node (red) it-
self and the other neighboring points (green). (c) Lip graph:
the neighboring nodes are divided into three classes: the root
nodes(red), the shape-linked nodes (green) and the symmetric
nodes (blue).

graph, and the graph convolution can be generally computed as:

Yout(vi) =
∑

vj∈N (vi)

1

Zi(vj)
X(vj)W (L(vj)), (1)

where X(vj) is the feature of node vj . W (·) is a weight func-
tion that allocates a weight indexed by label L(vj) from K
weights. Z(·) is the number of the corresponding subset, which
normalizes feature representations. Yout(vi) denotes the out-
put of graph convolution at node vi. More specifically, with the
adjacency matrix, the Eq.(1) can be represented as:

Yout(vi) =

K∑

k=1

Λ
− 1

2
k AkΛ

1
2
k XWk, (2)

where Ak is the adjacency matrix in lip-graph configuration of
the label k ∈ {1, 2, ...,K}. Λii

k =
∑

j A
ij
k is a degree matrix.

The ST-GCN used in graph branch consists of 10 ST-GCN
blocks. The first four blocks have 64 channels for output, the
following three blocks have 128 channels for output, and the
last three blocks have 256 channels for output. With the hier-
archical structure of ST-GCN block, the ST-GCN is capable to
model both shape information and motion information of the lip
which is highly related to the speech. And a 2-layer BGRU is
also added on the ST-GCN to capture the long-term temporal
dynamics. The output of the graph branch is graph feature fv

g .

2.2.3. Visual feature combination

With the extracted features from image and graph sequences,
these two kinds of visual features are combined by a weighting
scheme which can be formulated as:

fv
h = λ× fv

g + (1− λ)× fv
i , (3)

where fv
h denotes the hybrid visual feature. λ is a hyper-

parameter, which trades off the importance between the graph
feature and the image feature. In our work, λ is set to 0.3.

2.3. Bidirectional Synchronous Audio-Visual Fusion

In order to fuse the information of these two modalities, we pro-
pose an attention-based bidirectional synchronous fusion which
consists of a bidirectional sync block and a 2-layer BGRU.
Specifically, the bidirectional sync block is applied to synchro-
nize the audio feature and visual feature, then the synchronized
audio feature fa

s and visual feature fv
s are concatenated as syn-

chronized audio-visual feature fav
s . To further fuse the infor-

mation of these two modalities, the synchronized audio-visual
feature is fed into a 2-layer BGRU.

The bidirectional sync block is proposed to achieve bidirec-
tional feature synchronization and represent audio-visual fea-
ture in a more meaningful way. The visual features need to learn
synchronization information from the audio features to reduce
the asynchrony between the two modalities. Similarly, the au-
dio features need to learn from visual features to achieve audio-
visual synchronization. We take the advantage of the attention
mechanism which allows probabilistic many-to-many relations
to implement the idea of synchronizing visual and audio fea-
tures. Thus, the above processes can be formulated as:

fv
s = Sync(fa

o , f
v
h ), (4)

fa
s = Sync(fv

s , f
a
o ), (5)

Through these two steps, we can achieve bidirectional synchro-
nization of audio and visual features and allow the system to
learn the correlation between these two modalities.

Figure 4 shows the bidirectional sync block and the first
step in detail. The queries in attention mechanisms are from au-
dio feature, while the keys and values are generated by visual
feature. To explore the synchronization between audio and vi-
sual feature, the synchronous matrix W is generated by compar-
ing the similarity between the queries which contain the high-
level semantic acoustic information and the keys which con-
tain the high-level visual information. Finally, we can obtain
the synchronized visual features by further inference about syn-
chronous matrix and visual information. With this architecture,
the cross modal information integration and synchronization are
realized. The second step is similar to the first step. The param-
eters used in the two synchronization processes are shared.
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Figure 4: Illustration of bidirectional sync block. 1× 1 denotes
the kernel size of convolution. W denotes the weight to synchro-
nize features.

⊗
denotes the matrix multiplication.

3. Experiments and Discussions
3.1. Dataset

To perform a fair comparison, our experiments are conducted
on the same dataset with [3]: Lip Reading in the Wild (LRW)
database [8]. It contains over 480, 000 video clips and the clips
are performed by over 1, 000 subjects. There are 500 word
classes in total and each class contains 800 to 1000 samples for
training, 50 samples for validation and 50 samples for test. In
our work, the mouth ROI is extracted with a fixed bounding box
of 96 by 96, and then the frames are transformed to grayscale
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and normalized. Since the video clips in the LRW do not con-
tain the locations of lip key points, we use the public available
Dlib [27, 28] toolbox to estimate the 2D location of 20 lip key
points on each frame of the clips, named as “LRW Lip”.

3.2. Training

The same data augmentation as in [3] is performed on both im-
age sequences and audio sequences during training. Since di-
rectly end-to-end training leads to suboptimal performance, we
follow the same training procedure as in [29]. First, a tempo-
ral convolution back-end combined with ResNet or ST-GCN is
trained to initialize ResNet or ST-GCN. Second, the temporal
convolution back-end is replaced by 2-layer BGRU, and the
BGRU is initialized by training for 5 epochs, keeping the pa-
rameters of ResNet or ST-GCN fixed. Finally, the Adam opti-
mizer with an initial learning rate of 0.0003 and a mini-batch
of 36 is used to optimize each stream. After each stream has
been trained, the sync block followed by another 2-layer BGRU
is added on the top of two streams to fuse the audio stream and
the visual stream. The parameters of sync block and audio-
visual BGRU are initialized by training for 5 epochs, keeping
the weights of single stream fixed. The final end-to-end training
for the whole network uses the Adam optimizer with an initial
learning rate of 0.0001 and a mini-batch of 18.

3.3. Experimental Results

Different visual models are compared to verify the effectiveness
of our modified graph convolution for lip reading. ResNet-34 &
pseudo-image regards the nodes and frames of the lip graph se-
quences as the height and width of image and use a ResNet-34
to model the lip, while graph branch regards the lip key points
as a graph. All the models use the same estimated 2D loca-
tion of 20 lip key points as input to perform fair comparison.
The results are presented in Table 1. Compared with ResNet-
34 & pseudo-image, the GCN-based methods outperform the
ResNet-based method which shows that our method can make
good use of the relationship between the lip key points to model
the lip shape. Among the multiple ways of partitioning strat-
egy, our proposed implementation (lip graph) achieves the best
result which indicates that the lip graph can boost the ability of
representing temporal dynamics and capture more discrimina-
tive features.

Table 1: Classification accuracy (%) of different visual model
on “LRW Lip”.

Method Accuracy

ResNet-34 & pseudo-image 43.66
Graph branch & uniform graph 47.95
Graph branch & shape graph 48.84

Graph branch & lip graph 49.31

To verify the effectiveness of the hybrid visual stream, we
compare it with the optical flow method which is usually used
to provide complementary information. The optical flow uses
the same architecture as the image branch, and uses the optical
flow as input. As the results shown in Table 2, combining image
branch and graph branch (lip graph) leads to 0.96% increase,
better than optical flow (0.74%). These results indicate that the
graph branch can provide rich complementary information and
the addition of graph branch to image branch can better learn
the corresponding visual information of the speech signal.

Table 2: Classification accuracy (%) of different visual model
on LRW dataset.

Method Accuracy

Image branch [3] 83.29
Optical flow 76.55

Image branch + Optical flow 84.03
Image branch + Graph branch (proposed) 84.25

In order to investigate the robustness of different audio-
visual fusion approaches to acoustic noise, the comparison ex-
periment is carried out in the environments with different acous-
tic noise levels. The acoustic signal is corrupted by additive
babble noise from the NOISEX database [30]. The signal to
noise ratio (SNR) ranges from -5dB to 20dB.

We test different strategies to achieve audio-visual synchro-
nization. (1) the unidirectional synchronization strategy uses
unidirectional sync block which allows one modality to learn
from another modality. Specifically, AV-A2V allows the visual
modality to learn from audio modality, while AV-V2A allows
the audio modality to learn from visual modality. (2) Bidirec-
tional synchronization strategy (AV-Bi) uses bidirectional sync
block which allows bidirectional synchronization and informa-
tion interaction. The results are presented in Table 3. AV-A2V,
AV-V2A and AV-Bi outperform the baseline model, and the im-
provement proves that the proposed sync block can well solve
the asynchronous between audio and visual streams and learn
the correlation. AV-Bi achieves best performance compared
with other methods. The great improvement especially in strong
noise environment indicates that even if one modality is heav-
ily corrupted, the bidirectional information interaction can still
explore mutual relations between the two modalities and reduce
the dependence of system on a single modality.

Table 3: Classification accuracy (%) of the audio-only (A) and
audio-visual (AV) models on LRW dataset.

SNR(dB) -5 0 5 10 15 20 clean

A [3] 72.39 90.28 95.26 96.92 97.47 97.68 97.78
AV [3] 86.24 95.87 97.26 97.57 98.18 98.12 98.39

AV-A2V 91.18 95.72 97.37 97.99 98.22 98.27 98.27
AV-V2A 91.75 95.86 97.27 97.86 98.05 98.17 98.19

AV-Bi 92.73 96.62 97.77 98.24 98.41 98.51 98.49

4. Conclusion
In this work, we propose a lip graph assisted AVSR method us-
ing bidirectional synchronous fusion. First, a graph branch is
proposed to extract additional shape-based features, and then
combined with the image branch to extract more discriminative
visual features. Second, an attention-based bidirectional sync
block is proposed to achieve more reliable audio and visual syn-
chronization and boost the ability to explore the correlation be-
tween the two modalities. Experimental results on the largest
publicly available database show that our method achieves sig-
nificantly improvements compared to the baseline method.
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