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Abstract
Understanding videos via captioning has gained a lot of trac-
tion recently. While captions are provided alongside videos,
the information about where a caption aligns within a video is
missing, which could be particularly useful for indexing and
retrieval. Existing work on learning to infer alignments has
mostly exploited visual features and ignored the audio signal.
Video understanding applications often underestimate the im-
portance of the audio modality. We focus on how to make effec-
tive use of the audio modality for temporal localization of cap-
tions within videos. We release a new audio-visual dataset that
has captions time-aligned by (i) carefully listening to the audio
and watching the video, and (ii) watching only the video. Our
dataset is audio-rich and contains captions in two languages,
English and Marathi (a low-resource language). We further pro-
pose an attention-driven multimodal model, for effective utiliza-
tion of both audio and video for temporal localization. We then
investigate (i) the effects of audio in both data preparation and
model design, and (ii) effective pretraining strategies (Audioset,
ASR-bottleneck features, PASE, etc.) handling low-resource
setting to help extract rich audio representations.
Index Terms: multimodal models, low-resource audio-visual
corpus, caption alignment for videos

1. Introduction
Rooted in video understanding, temporally localizing captions
within videos is a relatively new and challenging task where
sentences are provided alongside videos, and the task involves
predicting start and end times where the sentence best aligns
with the video [1, 2, 3, 4]. An established approach to tackle
the alignment problem is to extract frame-level video features,
and compare their similarity with sentence level features. This
is based on the idea that, in some latent space, the most similar
video features will be closest to the sentence features. However,
these techniques do not exploit the multimodal nature of videos
and ignore the audio modality altogether.

In this paper, we aim to improve performance of tempo-
ral localization in videos by incorporating audio in an effective
way. Even for existing datasets, the audio modality may benefit
sentence alignment annotations, e.g. for ActivityNet [5] where
the ground truth sentence alignments were created by largely ig-
noring the audio modality. Henceforth, we will refer to sentence
as textual content. What if the ground truth alignments were in-
stead created in an audio-sensitive and not an audio-agnostic
manner? What is the effect of the language of the audio speech
and that of the caption on the quality of the alignment? What
are the learnings from existing datasets that can be leveraged
for a new language? We investigate these questions through a

new dataset MALTAav
1 (see Figure 1) which we make avail-

able2 through this work, and a new attention-based model that
leverages both video and audio.

Our work makes contributions on three main fronts:
1. Data: We present a new multilingual, richly-annotated
dataset MALTAav. The ground truth of MALTAav is generated
by instructing 10 annotators to pay close attention to the au-
dio and the visual streams while aligning the sentence captions
with the video. We observe that this process is a lot more inten-
sive than the video-driven and largely audio-agnostic alignment
process that has been employed to create erstwhile datasets. We
empirically quantify this slowdown to be by a factor of 3 by
also having another subset of annotators align captions with a
subset of our videos in MALTAav by ignoring audio (as is typ-
ically done in benchmark datasets). We refer to this subset as
MALTAv and use it only for evaluation purposes.
2. Model: Our attention-based multimodal architecture
MALTA is based on language specific pretraining of the au-
dio modality, and mutual co-attention between the three audio,
video and text modalities for their effective combination.
3. Pretrained Audio Features: We examine the role of pre-
trained audio features within our architecture. We take a de-
tailed look at various audio representations and investigate how
they interact with other modalities in the low-resource setting.

2. Related Work
To match the query and video frame candidates, one approach
is to map the visual features of the frame candidates and the tex-
tual feature of the caption into a shared space and measure their
semantic similarity. This is the basis of Moment Context Net-
work [3] and Cross-modal Temporal Regression Localize [6].
Most relevant to our work is Attention Based Location Regres-
sion (ABLR) [7] which uses a multimodal co-attention mecha-
nism to identify the relevant video frames based on an encod-
ing of the caption. [2] proposes a reinforcement learning based
agent to progressively regulate the temporal grounding bound-
aries. [8] proposed Moment Alignment Network, which unifies
the candidate frame encoding and temporal structural reasoning
into a single-shot feed-forward network.

Several techniques have been employed to leverage infor-
mation from both audio and visual modalities for the task of
caption generation. [9, 10] leveraged multimodality within an
encoder-decoder model and obtained a boost in performance.
[11, 12] also used speech features from the audio modality to

1multi-Modal And multi-Lingual Temporal sentence Alignment.
2The dataset and the codebase will be available for download at

https://www.cse.iitb.ac.in/˜malta/, the extended ver-
sion of our paper can be found at https://www.cse.iitb.ac.
in/˜malta/malta-extended.pdf
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Figure 1: Illustrating temporal sentence localization based on audio-visual features for a video from our dataset, showing annotations
specific to MALTAav (in pink) and MALTAv (in green). Please note for the sake of the readers, that the two call outs at the beginning
and end are English translations of the original Marathi speech.

gain further improvements. On other tasks such as video event
classification, [13, 14, 15] have shown improvements by using
audio features along with visual features. As for the use of mul-
tiple modalities for caption alignment, there is no specific prior
work that has come to our attention.

3. The Architecture
Our architecture is designed to enable multi-modal co-attention
across important audio and visual segments in the video on the
one hand and words in the sentence on the other hand. We
achieve this by scaffolding our architecture MALTA on Atten-
tion Based Location Regression (ABLR) [7]. It is an end-to-end
architecture to convert video and sentence inputs to the tempo-
ral coordinates in the output. MALTA comprises three main
components as depicted in Figure 2: (i) context-dependent fea-
ture encoding of the input audio, video streams and sentence,
(ii) multi-modal co-attention interaction highlighting important
audio, visual segments in the video and words in the sentence,
and (iii) attention based output prediction which can directly
regress the temporal coordinates of the target video.

3.1. Input Feature Representations

To extract video features, the video is first clipped into seg-
ments that are then encoded into dense video representations

Figure 2: Our proposed MALTA architecture. We denote the
final attention features by aA for the audio, and aV for the
video.

using the well-known C3D network [16]. These feature vectors
are subsequently passed as input to a bidirectional LSTM-based
encoder(single layer) and further transformed by a linear layer
applied to its hidden states. The audio modality is encoded us-
ing different representations that we detail further in Section 4.
Representations for the captions are derived from the final hid-
den state of a bidirectional LSTM that takes a sequence of Fast-
Text word embeddings as input.

3.2. Co-Attention of Audio, Video and Text Modalities

We consider sentence-video and sentence-audio interactions
independently and compute attention distributions over the
video/audio modalities using co-attention. We use the sentence
to learn attention on both video and audio modalities separately
and then concatenate both attended features to further attend to
the sentence. We use the attended sentence features to attend
once again to the audio and video modalities separately. We
finally sum the attention distributions over both video and au-
dio modalities, normalize it and use the resulting distribution
to regress the temporal coordinates of the sentence within the
video (see Figure 2).

3.3. Training Objective

The predicted start and end times3, τ̂si and τ̂ei , are obtained us-
ing the sum of final audio and video attention weights (aV A)
and directly regressing the temporal coordinates: we use a lin-
ear interpolation of two losses, Lreg and Lcal, to supervise the
prediction of temporal coordinates of a sentence within a video.

Lreg =

N∑
i=1

[R(τ̄si − τ̂si ) +R(τ̄ei − τ̂ei )] (1)

Lcal = −
N∑
i=1

∑M
j=1 δi,j log (aVi,j ∗ aAi,j)∑M

j=1 δi,j
(2)

where R(·) is a smooth L1 function [7], δi,j = 1 if the j th seg-
ment in Vi is within the ground truth interval and 0 otherwise.
Here, aV,j denotes the relative importance of video in the j-th
clip for the given sentence. The caliberation loss is similar to
the one in [7], with the audio attention included.

3The ground-truth start and end times are normalized by the duration
of the video. That is, (τ̄si , τ̄

e
i ) = (

τsi
di

,
τei
di

)
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4. Experimental Results
We attempt to answer the following questions through our ex-
periments. (i) Do we consistently benefit from attending to
multiple modalities? (ii) What is the effect of use of differ-
ent modalities when the ground truth sentence alignments are
created in an audio-video-driven (as against only video-driven)
manner? (iii) What is the effect of the language of the speech in
the audio and the language of the sentence captions on the qual-
ity of the alignment output? Owing to space constraints here,
we defer some details of the above as well as additional investi-
gations (e.g. how does performance vary using MALTA when
we deliberately manipulate videos to have incongruent audio?)
to the extended version on our website.
Datasets: We conduct experiments on our newly constructed
MALTAav as well as two standard benchmarks, namely
Charades-STA [6] and ActivityNet [5]. MALTAav consists of
simple video tutorials of two types: (i) TFTav that describes the
creation of scientific toys from waste material4(ii) ATMAav that
features farmers describing and demonstrating organic farming
techniques. Both video collections have speakers in the back-
ground narrating the process in Marathi. These videos are rich
in both video and audio content. TFTav consists of 492 videos,
with an average length of 80 seconds and around 7 sentences de-
scribing every video in each of two languages, viz., Marathi and
English, along with background speech in Marathi. On the other
hand, ATMAav is relatively smaller, consisting of 95 videos,
with an average length of 111 seconds and around 18 sentences
describing every video in a single language, viz., Marathi, ac-
companied by background speech in Marathi. We show results
from our experiments on TFTav and ATMAav separately.

Charades-STA [6] contains 16128 clip-sentence pairs; we
created training/test splits containing 12408/3720 pairs, respec-
tively. ActivityNet [5] is significantly larger containing 20K
videos and 100K sentences annotated with start and end times.
We used the publicly-available train set for training and the val-
idation set to evaluate our models.
Implementation Details: Videos in ActivityNet, Charades-
STA and MALTAav were split into 8922:4369 , 5338:1334
and 389:103 clips for training and testing, respectively. We
extracted 4096-dimensional C3D features for each dataset to
serve as the video features and 128-dimensional audio features
were extracted using VGG. Bidirectional LSTM layers with a
hidden state size of 256 were used for each modality. We used
the Adam optimizer to train MALTA with a learning rate of
0.001. Following the metrics adopted in prior work for tem-
poral localization of sentences in videos [6], for each sentence,
we calculate the Intersection over Union (IoU) between the pre-
dicted and ground truth temporal coordinates. “IoU = α” de-
notes the percentage of the sentence queries which have an IoU
larger than α.
Audio Representations. We investigate the following:
• VGG features [17]: These are extracted from a pretrained net-
work trained on AudioSet consisting of audio events [18].
• PASE features: PASE [19] is a pretrained speech model con-
sisting of multiple workers that are jointly trained to optimize
seven different speech-driven self-supervised tasks, including
regression tasks that involve predicting the waveform, MFCC
[20] and prosody features and binary discrimination tasks that
differentiate between positive and negative samples based on

4We downloaded these videos from http://www.
arvindguptatoys.com/toys-from-trash.php and ob-
tained consent from the content creator

Activity-Net Charades
MODEL IoU= .5 IoU= .7 IoU= .5 IoU= .7
A-only 0.3373 0.1705 0.3583 0.1537
V-only 0.3571 0.1786 0.3611 0.1462

ABLR [7] 0.3571 0.1786 0.3611 0.1462
MALTA 0.3636 0.1872 0.3650 0.1490

Table 1: Results on Activity-Net and Charades using a single
modality(A-ONLY, V-ONLY) and multiple modalities (ABLR,
MALTA).

an anchor utterance. We do not make use of the speech labels
while extracting PASE features.
• ASR-bnf features: We used the Kaldi toolkit [21] to train
a state-of-the-art time delay neural network (TDNN) acoustic
model on roughly 100 hours of weakly labelled Marathi spo-
ken tutorial data.5 The TDNN model has 12 layers with a 128-
dimensional bottleneck layer before the penultimate layer. We
decoded Marathi speech from the videos in both TFTav and
ATMAav using this trained network and extracted bottleneck
features.

4.1. Single Modality

In order to analyze the importance of combining modalities
(question (i)), we first investigate systems that only consider
co-attention between a single modality (video or audio) and
the sentence. In Table 1, we report results on the two exist-
ing benchmark datasets and in Table 2 we present results on
TFTav; A-ONLY refers to using only the audio VGG features,
and V-ONLY refers to using just the C3D video features. Given
the smaller size of our dataset, we report mean IoUs and stan-
dard deviations computed across five different random seeds
for TFTav, and show results from the best-performing seed for
Activity-Net and Charades in Table 1. We observe that V-ONLY
outperforms A-ONLY on ActivityNet. On Charades and TFTav,
A-ONLY is better than V-ONLY, with the margin being larger for
TFTav. This further validates our claim that TFTav is content-
rich in the audio modality.

We note another interesting trend in the IoUs in Table 2.
IoU=α exhibits a decreasing trend in standard deviations with
increasing values of α. Given the smaller dataset sizes of
TFTav, ATMAav and the higher variance at smaller α’s, we re-
port IoU=0.5 and IoU=0.7 in all subsequent experiments for
TFTav and ATMAav.

MODEL IoU= .5 IoU= .7

A-ONLY 0.1529 ± 0.005 0.0557 ± 0.001
V-ONLY 0.1321 ± 0.004 0.0486 ± 0.002

Table 2: Results on the TFTav dataset

4.2. Combining Modalities

Next we investigate the question of whether attending to multi-
ple modalities helps. In Table 1, we report the performance of
our multimodal MALTA on ActivityNet and Charades. We find
consistent improvements in performance using MALTA over
ABLR [7], which is a near state-of-the-art system on Charades.
On ActivityNet, we obtain fairly significant improvements in
performance at α = 0.5 and α = 0.7. The result on Activ-
ityNet [7] is different from the numbers originally reported as
we were unable to download roughly 1000 videos (that are no
longer available) and hence could not use them during training.

5Available from: https://spoken-tutorial.org/
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A-feat IoU= .5 IoU= .7

None 0.1321 ± 0.004 0.0485 ± 0.002
VGG 0.1420 ± 0.002 0.0485 ± 0.005

MFCC 0.1425 ± 0.006 0.0439 ± 0.006
PASE-TFTav scratch 0.1387 ± 0.006 0.0474 ± 0.003

PASE-spk scratch 0.1375 ± 0.006 0.0496 ± 0.002
PASE-TFTav finetuned 0.1450 ± 0.005 0.0459 ± 0.003

PASE-spk finetuned 0.1459 ± 0.005 0.0484 ± 0.005
PASE-TFTav +spk finetuned 0.1478 ± 0.006 0.0462 ± 0.005

ASR-bnf 0.1550 ± 0.005 0.0545 ± 0.005

Table 3: Results on TFTav with multimodal coattention compar-
ing different audio representations. The first row corresponds to
the V-ONLY model.

A-feat IoU= .5 IoU= .7

VGG 0.0476 ± 0.012 0.0065 ± 0.002
MFCC 0.0388 ± 0.003 0.0112 ± 0.004

PASE-ATMAav scratch 0.0382 ± 0.006 0.0147 ± 0.006
PASE-spk finetuned 0.0392 ± 0.007 0.0157 ± 0.003

Table 4: Results on the ATMAav dataset.

4.3. Comparing Audio Representations & Pretraining

In Table 3, we present results on the TFTav using different au-
dio representations and training strategies with our multimodal
model MALTA. VGG [17] has been described earlier in Sec-
tion 4. MFCC [20] features are standard speech features. “tft”
refers to the data in TFTav and “spk” refers to the weakly la-
beled spoken tutorial data. “scratch” indicates that the PASE
model was trained starting from randomly initialized weights
and “finetuned” indicates that we started with a pretrained PASE
model which was further trained with the specified dataset.
ASR-bnf refers to the bottleneck features extracted from the
ASR model detailed in Section 4.

We make the following three main observations: 1) Start-
ing from a pretrained PASE model and further fine-tuning it is
consistently a better strategy than training a PASE model from
scratch, especially given the relatively small size of the datasets
used for fine-tuning. 2) All the finetuned PASE features are
better than simple MFCC features. 3) ASR-bnf features out-
perform all the other features by a clear margin. These features
were extracted from an ASR system and hence are most pho-
netically aware among all the representations. We also present
results on ATMAav in Table 4 which exhibit similar trends
as TFTav for IoU= 0.7 and demonstrate the transferability of
PASE features. (The slightly different trend at IoU= 0.5 is pos-
sibly because ATMAav is roughly one-fifth the size of TFTav.)

4.4. Skylines for Audio Modality

Our design of MALTA is reinforced in two skyline experiments
wherein (i) we use ground truth based ‘hard’ attention (instead
of attentions inferred from MALTA) to regress the temporal co-
ordinates for TFTav and (ii) we use transcriptions for the speech
in TFTav as input instead of audio features. These transcrip-
tions are derived using Google’s ASR API for Marathi. Table 5
shows results from both these skyline experiments. ASR-based
transcription is expected to serve as a skyline because we ex-
pect the Marathi transcriptions from Google’s API to be largely
accurate, in which case the sentences are expected to have sig-
nificant n-gram overlap with the speech transcriptions.

MODEL IoU= .5 IoU= .7

Hard-Attention 0.6526 0.5364
Transcript 0.1710 0.0736

Video+Transcript 0.1730 0.0689

Table 5: Skyline results on TFTav using hard attention and
Google transcriptions for Marathi speech

4.5. Correctly Analysing Gains from Audio

As a first step toward answering question (ii), i.e., assessing the
importance of deriving ground truth alignments using both au-
dio and video modalities as opposed to just the video modality,
we compute the overlap between the video driven annotations
on TFTv (instance of MALTAv illustrated in Figure 1) with the
more ideal, audio-video driven annotations on TFTav. We find
IoU=0.1 to be 0.71 and IoU=0.7 to be 0.19. The IOU is not that
high, reinforcing our claim that alignment using only the video
modality may not be very accurate. In Table 6, we illustrate the
approximate assessment of the improvement of MALTA over
V-ONLY on a less accurately aligned dataset such as TFTv. On
the other hand, TFTav more faithfully represents the gains ob-
tained by MALTA compared to V-ONLY (c.f. Table 3).

MODEL IoU= .5 IoU= .7

V-ONLY 0.0906 0.0313
MALTA 0.0953 0.0375

Table 6: Results using MALTA over V-ONLY on TFTv

4.6. Cross-Lingual Evaluation

Here, we address our final question of interest: How does
MALTA perform when speech in the videos is in a language
(Marathi) that is different from the captions’ language (En-
glish)? With English captions, using V-ONLY on MALTAav,
IoU= .5 is 0.143 and IoU= .7 is 0.045, while using MALTA
with ASR-bnf features yields IoU= .5 and IoU= .7 values of
0.149 and 0.057, respectively. Even with the mismatch in lan-
guage, at higher α’s, we see an improvement using the audio
modality with MALTA over using just video.

5. Conclusion
We present a new dataset MALTAav and an attention-based
model MALTA for localizing sentences/captions in videos that
leverages both audio and video modalities and that can gener-
alize to new and possibly low-resource language settings. We
study a state-of-the-art model, as well as our MALTA on ex-
isting monolingual, video-heavy benchmarks as well as on our
new dataset and observe clear advantages of using MALTA that
leverages the audio modality. We also present a detailed investi-
gation of different audio representations as well as pretraining,
that gives us insights on how best to capture information from
this modality for the alignment task.
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