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Abstract
The objective of this paper is to separate a target speaker’s
speech from a mixture of two speakers using a deep audio-
visual speech separation network. Unlike previous works that
used lip movement on video clips or pre-enrolled speaker in-
formation as an auxiliary conditional feature, we use a single
face image of the target speaker. In this task, the conditional
feature is obtained from facial appearance in cross-modal bio-
metric task, where audio and visual identity representations are
shared in latent space. Learnt identities from facial images en-
force the network to isolate matched speakers and extract the
voices from mixed speech. It solves the permutation prob-
lem caused by swapped channel outputs, frequently occurred
in speech separation tasks. The proposed method is far more
practical than video-based speech separation since user profile
images are readily available on many platforms. Also, unlike
speaker-aware separation methods, it is applicable on separa-
tion with unseen speakers who have never been enrolled before.
We show strong qualitative and quantitative results on challeng-
ing real-world examples.
Index Terms: audio-visual, speech separation, speaker isola-
tion, cross-modal biometrics.

1. Introduction
In recent years, there has been great progress in the field of

automatic speech recognition, achieving human-level transcrip-
tion accuracy in quiet environment [1, 2, 3]. However, it still
remains a challenge to accurately recognise speech in noisy en-
vironments or multi-talker background. Humans have a remark-
able ability in separating one person’s voice from others [4]. In
a cocktail party environment, for example, humans can focus
on one speaker’s voice while filtering out the rest.

The goal of this work is to extract a target speaker’s speech
from a mixed signal. While there have been researches on sep-
arating simultaneous speakers based only on the audio [5, 6],
the permutation problem remains unsolved. Although a per-
mutation invariant training method [7, 8] relieves the prob-
lem, the permutation problem still exists in the inference stage
since there is no explicit constraint for the channel assignment.
Furthermore [9, 10] shows that an embedding of the target
speaker’s voice can be used to separate simultaneously speak-
ing speech as auxiliary information. However, this requires a
pre-enrollment of speaker embedding in a clean environment,
which also limits its applications.

In recent works of [11, 12, 13, 14, 15], it has been shown
that the use of video helps in solving the cocktail party problem.
The methods are able to separate speech of a particular speaker
by conditioning on his/her lip movements in the correspond-
ing face video. These audio-visual models have demonstrated

Video examples: https://youtu.be/ku9xoLh62E4

impressive results, but the dependence on the lip movements
means that their usefulness is limited to scenarios where high
frame rate video is available.

But what if a single face image can substitute the full video
stream? This can be used in a wide range of scenarios since
users’ profile images are already available in many mobile de-
vices, social networks and company groupware. Once consid-
ered a seemingly impossible task, recent works have shown that
voice representations can be obtained from face images and
vice-versa [16, 17, 18, 19, 20].

We propose a novel audio-visual speech separation (AVSS)
model, FaceFilter, that is conditioned on a still face image of
a target speaker. With our approach, the face image provides
speaker identity information to the network, thus it resolves
the ambiguity of assigning the separated voice to the speaker.
We make the following contributions: (i) we propose a novel
method for audio-visual speech separation using only a single
face image of the target speaker. The method exploits cross-
modal biometric representation obtained from face appearance
to solve the permutation problem in speech separation; (ii) the
model trained on a large-scale dataset is evaluated on unseen
and unheard speakers, on which we demonstrate strong qual-
itative and quantitative performance; (iii) we conduct further
experiments with additional methods for improving separation
performance such as temporal attention [21] and speaker repre-
sentation loss [22].

2. Related works
Research in speech separation has seen significant progress due
to the application of neural network models and the availability
of new large-scale datasets [23, 24]. The majority of works on
speech separation use the audio modality only, and they focus
on how to effectively extract the portion of a target speaker by
analysing spectral characteristic. Spectral embeddings [5, 25]
and time-domain speech analysis [6, 26] have shown great suc-
cess on multiple speaker separation tasks by distinguishing one
speaker’s voice from mixed input speech. However, they emit
separated signals into random channels on the inference stage,
where it requires additional clustering step that is vulnerable
to permutation. Some works have experimented on the use
of speaker embeddings as conditional vectors to regulate the
speech assignment. In [9, 10, 27], they obtained speaker em-
beddings of target speaker from a pre-trained speaker represen-
tation model such as x-vector or i-vector [28, 29], and then used
the representation as a conditional vector to extract the target
speaker’s voice from a noisy input speech signal. The perfor-
mance of these methods far exceeds the previous methods not
conditioned on speaker-specific information.

There have been some works that use auxiliary audio-visual
information, namely lip movements on video [11, 12, 30, 31].
In these methods, visual embedding learns linguistic informa-
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Figure 1: Description of the proposed audio-visual speech separation network. Blue blocks are trainable neural networks whereas the
red blocks are networks pre-trained in cross-modal biometric task.

tion in a synchronisation task which matches natural correspon-
dence between speech and visual streams. They effectively ex-
tract target voice, even with a large number of simultaneous
speech; however, these methods are very sensitive to the quality
of video.

3. Cross-modal identity representation
Face and voice analysis are popular tools to verify user iden-
tity due to their non-invasive nature and good performance. Al-
though the two types of signals share common information (i.e.
person identity), researches in each field have evolved indepen-
dently [28, 32] due to the difficulty in building a unified sta-
tistical model using heterogeneous features from the different
modalities. Speaker recognition analyses consistent spectral
characteristics over utterances such as vocal tract shape, pitch
and prosody variation, whereas face recognition looks into the
shape of facial landmarks. However, there is common higher-
order information that are captured by both tasks, including but
not limited to age, nationality and gender.

Recent works have demonstrated that joint embedding of
face and voice characteristics can be learnt using deep neural
networks trained on large-scale datasets. In [16, 18, 33], the
problem is set up as a cross-modal matching task using a two
stream network. Representations of speech segments and facial
appearances are mapped using the networks onto a joint embed-
ding space, and they are trained to predict whether or not the
pair comes from same identity. The embeddings are learnt in
a self-supervised manner; if audio segment and face image are
taken from same video clip, the learning criterion minimises the
distance between embeddings whereas it is maximised if they
are from different clips.

We exploit these cross-modal identity embeddings to re-
trieve speaker identity from facial appearance. In particular, we
use the implementation of [18] in this paper, where the embed-
dings are trained as a one-of-many matching task. We sample
images and audio segments from talking face videos and train
the model with a multi-way matching objective [18], where the
model has to select one of the 200 audio segments that comes

from the same video as the face image. Both audio and video
streams are based on the VGG-M network [34] – detailed net-
work architecture is given in [18].

4. Audio-visual speech separation
In this section, we describe the proposed architecture and train-
ing strategies for the AVSS network.

The most relevant work to the proposed method is the
speaker-conditioned speech separation tasks. In this paper, we
replace the speaker identity vector with cross-modal identity
embeddings extracted from face images instead of that from
pre-enrolled speakers’ voices. Without having a speaker pre-
enrollment step, we can retrieve speaker identity from a profile
image in the inference stage, even for unseen speaker’s voice.
The network structure that we use is similar to the one proposed
in [11], but with a few changes. It consists of three sub-blocks
such as speech/image encoders, audio-visual fusion, and speech
separation. The overall structure is illustrated in Figure 1.
Speech/Image encoder. In this stage, speech and face appear-
ances are extracted and encoded onto a latent space, which pre-
pares for the audio-visual fusion. The image encoder block
extracts face representations to condition mask estimator. The
face identity extractor is pre-trained with the cross-modal iden-
tity matching task (Section 3), so that the learnt representation
encapsulates joint information between face and voice. The out-
put of the identity extractor is ingested by two additional fully-
connected layers that are jointly trainable with the speech sepa-
ration network. In the speech encoder block, input speech signal
is first transformed into a magnitude spectrum using short-time
Fourier transform (STFT), then the encoder network transforms
the magnitude spectrum into a latent domain representation so
that it is easy to combine with a visual representation extracted
from the image encoder.
Audio-visual fusion. In the audio-visual fusion stage, we gen-
erate audio-visual joint features to represent speaker informa-
tion as well as spectral information to be separated. Joint audio-
visual features are obtained by concatenating speech embed-
dings and visual embeddings along the channel axis.
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We implement two strategies to assign visual identity on
speech embeddings. The first one uses equal speaker infor-
mation on each frame of speech embeddings as done in [9].
The visual identity is concatenated on every speech embedding
frame, after verifying its effectiveness in regulating the separa-
tion task by consistent guidance. The other strategy is based on
self-attention mechanism [21] to provide differently weighted
constraints for the separation. Since each speech frame con-
tains different states such as silence, target speech only, inter-
fering speech only and overlapped speech, the degree of sepa-
ration needs to be varied depending on the characteristic of each
frame. We extract weights referred to speech embeddings, and
they are multiplied with the identity vector. The weighted vi-
sual embedding vector is concatenated with its corresponding
speech embedding frame.
Speech separation. The mask estimator predicts a time-
frequency mask, which only leaves the desired voice from the
observed signal. In particular, it notices the target speaker us-
ing audio-visual features and generates a soft mask that con-
siders the power ratio between target and interfering signals.
The magnitude spectrum is filtered with the estimated mask to
remove undesired components including other speaker’s voice.
Once the spectrogram is separated, the speech signal is syn-
thesized using phase reconstruction and inverse STFT. We use
the Griffin-Lim algorithm [35] to reconstruct phase components
because it is better than using the phase of input noisy signal,
especially when the input signal is severely distorted by inter-
fering speech.
Learning strategy. Our training strategy is described into two
different criteria for speech separation LSS and speaker isola-
tion LSRL respectively.

LTOT = LSS + LSRL (1)

The training criterion for the separation is based on minimis-
ing mean-squared-error (MSE) between masked spectrogram
and magnitude spectrum of reference speech in the logarithm
scale (Equation 2).

LSS =

∥∥∥∥∥log
(

X

f(A++ V)� S

)∥∥∥∥∥
2

(2)

where X is target magnitude spectrum, S is mixed input speech
spectrum and f(·),A,V are the mask estimator, audio em-
beddings and weighted visual embeddings respectively, where
++ is concatenation mark. All network parameters are jointly
trained except the face identity extractor in the image encoder.

In addition, we exploit another learning criterion, speaker
representation loss [22], where it maximises the cosine similar-
ity of latent distributions between the separated speech and the
reference speech using the speech identity extractor pre-trained
on cross-modal biometrics task (Equation 3).

LSRL = 1− cos
(
g(X), g(f(A++ V)� S)

)
(3)

where g(·) is the speech identity extractor. It helps the model to
isolate the target speaker from multiple speakers since the em-
beddings from the speech identity extractor represent speaker
identity, hence only allowing the target speaker’s identity to re-
main in separated signal.

5. Experiments
5.1. Experimental setup

Both the cross-modal biometrics model and the AVSS model
are trained on the VoxCeleb2 dataset [36] which contains

Table 1: Architecture of audio-visual speech separation net-
work. The configurations of FCBlock, ConvBlock, and Res-
Block are described in Figure 3.

Model Layer # Channels

FC layers
(Image encoder)

FCBlock 1,536
FCBlock 512

Temporal attention FC + Sigmoid 1

Encoder
(Speech encoder)

ConvBlock 1,536
ResBlock (×4) 1,536
FCBlock 512

Mask estimator ConvBlock (×15) 1,536
FC + Sigmoid 257

celebrity voices from YouTube. The dataset contains 5,994
speakers with a total of 1,092,009 clips in the training set and
118 speakers with 36,237 clips in the test set. Video clips in
VoxCeleb2 include various environmental factors such as ambi-
ent noise, reverberation, and channel effects.

We prepare the training data for speech separation by mix-
ing two clips from different speakers, while the protocol for
generating the training data for the biometric task is identical
to that in [16]. There are 2,000,000 samples for training and
100,000 samples for validation, both of which are from the
training set speakers. For evaluation, we reserve two types of
data, which are seen-heard and unseen-unheard speakers, and
each type has another 4 gender pair subsets, i.e., male-male (M-
M), male-female (M-F), female-male (F-M), and female-female
(F-F). Each evaluation set has 1,000 samples. There is no over-
lapped evaluation data for the separation task with training set
for the biometric task.
Audio representation. Audio stream of the cross-modal bio-
metric network ingests 40-dimensional mel-spectrogram in log-
arithm scale, extracted at every 10ms with 25ms window length.
Audio input to the speech separation module has same settings
for slicing and shifting of frames, and input signal is trans-
formed into 257 dimension using short-time Fourier transform.
The length of input audio segment is 2 seconds, and the it spec-
tral feature dimension is 40×200 for the biometric network and
257× 200 for the separation network.
Image representation. The input to the visual network is
a single image containing the person’s face of which size is
224 × 224. For every video in VoxCeleb2, we sample 10 im-
age frames, from which one image is randomly sampled dur-
ing training. The images are taken from the same video clip
as the audio since the cross-modal training does not make use
of the identity labels, and this also helps to prevent mismatch
in person’s physiological characteristics such as age. For the
evaluation, the images are randomly taken from other clips with
same speaker, which is in line with the practical scenario where
a profile image would be used.
Network parameters. Each sub-network of the proposed
AVSS model mostly consists of convolutional layers. The de-
tailed parameter settings for the architecture are given in Ta-
ble 1, and the structures of FCBlock, ConvBlock and ResBlock
are described in Figure 3.

5.2. Evaluation protocol

The method is evaluated on two different tasks – speech sep-
aration performance and speaker isolation. The first measures
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Male-Male Male-Female

Female-Male Female-Female

Figure 2: Spectrogram for experimental results. There are 4 samples which are combinations of genders, where genders on the left are
the targets and the right are set as interference. Each set demonstrates clean, mixed and separated speech from left to right respectively.

(a) FCBlock (b) ConvBlock (c) ResBlock

Figure 3: Configuration of neural network blocks

Table 2: Audio-visual speech separation and speaker isolation
results on VoxCeleb2

Method Criterion SDRi Accuracy

Audio-only MSE w. PIT 0.690 dB 49.94 %

Audio-visual MSE 2.348 dB 80.56 %
+attention MSE 2.413 dB 80.89 %
+attention MSE w. SRL 2.528 dB 80.20 %

the separation performance, and signal-to-distortion improve-
ment (SDRi) is used to measure the quality of separated sig-
nals. The secondary evaluation metric is speaker isolation ac-
curacy which shows whether the output speech is from the tar-
get speaker given in the face image. The accuracy indicates
the effectiveness of visual information to indicate correct tar-
get speaker. Audio-only separation method (baseline) shows an
accuracy of 49.94% (i.e. random selection).

5.3. Experiment results

Table 2 reports the results of our proposed methods using the
metrics described in Section 5.2. Our baseline is a separation
network trained using the permutation invariant training (PIT)
loss [7], a popular method for speech separation. We compare
three variants of the proposed method – the basic AVSS model,
the model with attention-based fusion, and the model trained
with both LSS and LSRL losses. The basic AVSS model does
not include temporal attention and visual vector is padded uni-
formly along the time direction with the same values.

Note that the SDRi values are lower than those typically
reported for source separation on other datasets, since clips
in VoxCeleb2 contain environmental noise which degrades the

Table 3: Speech separation results for gender combinations

Mixture SDRi Accuracy

Seen-Heard Speaker

Male-Male 2.084 dB 74.8 %
Male-Female 3.039 dB 94.4 %
Female-Male 3.821 dB 93.8 %
Female-Female 1.930 dB 71.2 %

Unseen-Unheard Speaker

Male-Male 1.256 dB 61.2 %
Male-Female 3.066 dB 92.1 %
Female-Male 3.830 dB 94.5 %
Female-Female 1.198 dB 59.6 %

SDR numbers when the network correctly removes the noise
from the target.

We report accuracy for different gender pairs, which signif-
icantly affects the performance as shown in Table 3. Mixtures
with same gender, i.e., M-M and F-F sets, are more difficult to
distinguish by given the images, and the SDR improvement is
relatively small. The results for different gender sets, i.e., F-M
and M-F sets, show significantly higher SDR gain and identifi-
cation accuracy since it is much easier to select the target speech
using the given image. Unseen-unheard test sets consist of sam-
ples that are not seen during the training of both cross-modal
biometrics and speech separation tasks. Although the discrimi-
nation performance of unseen people is slightly lower than that
of seen pairs, the performance is still far above the baseline.

6. Conclusion
We proposed a novel audio-visual speech separation method
that can isolate a specific speaker from multi-talker simulta-
neous speech using a conditional embedding represented by
face image. By using self-supervision, speaker representation
can be retrieved from a face image in latent space, which is
then used to condition the speech separation network. This ap-
proach overcomes the permutation problem that is unavoidable
in audio-only source separation, and consistently reconstructs
speech from the target identity. The experimental results con-
firm its effectiveness on the speech separation task.

7. Acknowledgements 
This research was partially supported by the Graduate School 
of YONSEI University Research Scholarship Grants in 2020. 

3484



[1] William Chan, Navdeep Jaitly, Quoc Le, and Oriol Vinyals, “Lis-
ten, attend and spell: A neural network for large vocabulary con-
versational speech recognition,” in Proc. ICASSP, 2016.

[2] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai,
Jingliang Bai, Eric Battenberg, Carl Case, Jared Casper, Bryan
Catanzaro, Qiang Cheng, Guoliang Chen, et al., “Deep speech
2: End-to-end speech recognition in English and Mandarin,” in
Proc. ICML, 2016.

[3] Chung-Cheng Chiu, Tara N Sainath, Yonghui Wu, Rohit Prab-
havalkar, Patrick Nguyen, Zhifeng Chen, Anjuli Kannan, Ron J
Weiss, Kanishka Rao, Ekaterina Gonina, et al., “State-of-the-art
speech recognition with sequence-to-sequence models,” in Proc.
ICASSP, 2018.

[4] Nima Mesgarani and Edward F Chang, “Selective cortical repre-
sentation of attended speaker in multi-talker speech perception,”
Nature, vol. 485, no. 7397, pp. 233–236, 2012.

[5] John R Hershey, Zhuo Chen, Jonathan Le Roux, and Shinji
Watanabe, “Deep clustering: Discriminative embeddings for seg-
mentation and separation,” in Proc. ICASSP. IEEE, 2016, pp.
31–35.

[6] Yi Luo and Nima Mesgarani, “Tasnet: time-domain audio separa-
tion network for real-time, single-channel speech separation,” in
Proc. ICASSP. IEEE, 2018, pp. 696–700.

[7] Dong Yu, Morten Kolbæk, Zheng-Hua Tan, and Jesper Jensen,
“Permutation invariant training of deep models for speaker-
independent multi-talker speech separation,” in Proc. ICASSP.
IEEE, 2017, pp. 241–245.

[8] Morten Kolbæk, Dong Yu, Zheng-Hua Tan, and Jesper Jensen,
“Multitalker speech separation with utterance-level permutation
invariant training of deep recurrent neural networks,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol.
25, no. 10, pp. 1901–1913, 2017.

[9] Quan Wang, Hannah Muckenhirn, Kevin Wilson, Prashant Srid-
har, Zelin Wu, John R. Hershey, Rif A. Saurous, Ron J. Weiss,
Ye Jia, and Ignacio Lopez Moreno, “VoiceFilter: Targeted Voice
Separation by Speaker-Conditioned Spectrogram Masking,” in
INTERSPEECH, 2019, pp. 2728–2732.

[10] Chenglin Xu, Wei Rao, Eng Siong Chng, and Haizhou Li, “Time-
domain speaker extraction network,” in 2019 IEEE Automatic
Speech Recognition and Understanding Workshop (ASRU). IEEE,
2019, pp. 327–334.

[11] Triantafyllos Afouras, Joon Son Chung, and Andrew Zisserman,
“The conversation: Deep audio-visual speech enhancement,” in
INTERSPEECH, 2018.

[12] Ariel Ephrat, Inbar Mosseri, Oran Lang, Tali Dekel, Kevin Wil-
son, Avinatan Hassidim, William T. Freeman, and Michael Ru-
binstein, “Looking to listen at the cocktail party: A speaker-
independent audio-visual model for speech separation,” ACM
Transactions on Graphics, vol. 37, no. 4, pp. 112:1–112:11, 2018.

[13] Rui Lu, Zhiyao Duan, and Changshui Zhang, “Audio–visual deep
clustering for speech separation,” IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing, vol. 27, no. 11, pp. 1697–
1712, 2019.

[14] Tsubasa Ochiai, Marc Delcroix, Keisuke Kinoshita, Atsunori
Ogawa, and Tomohiro Nakatani, “Multimodal speakerbeam: Sin-
gle channel target speech extraction with audio-visual speaker
clues,” Proc. Interspeech 2019, pp. 2718–2722, 2019.

[15] Andrew Owens and Alexei A Efros, “Audio-visual scene analysis
with self-supervised multisensory features,” in Proc. CVPR, 2018.

[16] Arsha Nagrani, Samuel Albanie, and Andrew Zisserman, “Seeing
voices and hearing faces: Cross-modal biometric matching,” in
Proc. CVPR, 2018, pp. 8427–8436.

[17] Arsha Nagrani, Samuel Albanie, and Andrew Zisserman, “Learn-
able pins: Cross-modal embeddings for person identity,” in Proc.
ECCV, 2018.

[18] Soo-Whan Chung, Joon Son Chung, and Hong-Goo Kang, “Per-
fect match: Self-supervised embeddings for cross-modal re-
trieval,” IEEE Journal of Selected Topics in Signal Processing,
pp. 1–1, 2020.

[19] Tae-Hyun Oh, Tali Dekel, Changil Kim, Inbar Mosseri,
William T Freeman, Michael Rubinstein, and Wojciech Matusik,
“Speech2face: Learning the face behind a voice,” in Proc. CVPR,
2019, pp. 7539–7548.

[20] Changil Kim, Hijung Valentina Shin, Tae-Hyun Oh, Alexandre
Kaspar, Mohamed Elgharib, and Wojciech Matusik, “On learning
associations of faces and voices,” in Proc. ACCV, 2018.

[21] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu,
Bing Xiang, Bowen Zhou, and Yoshua Bengio, “A structured self-
attentive sentence embedding,” in Proc. ICLR, 2017.

[22] Seongkyu Mun, Soyeon Choe, Jaesung Huh, and Joon Son
Chung, “The sound of my voice: Speaker representation loss for
target voice separation,” in Proc. ICASSP, 2020.

[23] Joon Son Chung and Andrew Zisserman, “Learning to lip read
words by watching videos,” Computer Vision and Image Under-
standing, 2018.

[24] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khu-
danpur, “Librispeech: an asr corpus based on public domain audio
books,” in Proc. ICASSP. IEEE, 2015, pp. 5206–5210.

[25] Yi Luo, Zhuo Chen, and Nima Mesgarani, “Speaker-independent
speech separation with deep attractor network,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol.
26, no. 4, pp. 787–796, 2018.

[26] Yi Luo and Nima Mesgarani, “Conv-tasnet: Surpassing
ideal time–frequency magnitude masking for speech separation,”
IEEE/ACM Transactions on Audio, Speech, and Language Pro-
cessing, vol. 27, no. 8, pp. 1256–1266, Aug 2019.
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