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Abstract
In this paper, we propose a multiple-domain adaptive restricted
Boltzmann machine (MDARBM) for simultaneous conversion
of speaker identity and emotion. This study is motivated by the
assumption that representing multiple domains (e.g., speaker
identity, emotion, accent) of speech explicitly in a single model
is beneficial to reduce the effects from other domains when
the model learns one domain’s characteristics. The MDARBM
decomposes the visible-hidden connections of an RBM into
domain-specific factors and a domain-independent factor to
make it adaptable to multiple domains of speech. By switching
the domain-specific factors from the source speaker and emo-
tion to the target ones, the model can perform a simultaneous
conversion. Experimental results showed that the target domain
conversion task was enhanced by the other in the simultaneous
conversion framework. In a two-domain conversion task, the
MDARBM outperformed a combination of ARBMs indepen-
dently trained with speaker-identity and emotion units.
Index Terms: voice conversion, emotion conversion, speaker
recognition, emotional speech recognition, generative model

1. Introduction
Thanks to the recent developments in automatic speech recog-
nition (ASR) and text-to-speech (TTS) systems, interactions
and cooperation between humans and machines are becoming
more real. An ASR system can recognize the linguistic con-
tents of speech precisely and a TTS system can produce speech
that is just as natural and intelligible as that produced by hu-
mans (e.g., [1, 2]). However, speech contains not only linguis-
tic information but also paralinguistic information [3] such as
speaker identity and emotion. When it comes to achieving com-
fortable speech communication between humans and machines,
handling the paralinguistic information in speech is still a chal-
lenging task.

One of the techniques to handle such paralinguistic in-
formation on speech interfaces is voice conversion (VC). The
purpose of VC is to modify speaker identity and speaking
type (emotion, style, accent, and character) while preserving
the inherent linguistic information [4]. This technique can be
applied to various scenarios. For example, VC has been used
to improve the speech recognition accuracy in noisy environ-
ments [5] and to develop speaking-aid systems [6, 7].

Speaker-identity conversion and emotion conversion tasks
are major variants of VC tasks, and there are many previously
proposed approaches to both. Modification of the spectrum
configurations and statistical parameters of the fundamental fre-
quency is effective for both tasks. In other words, if an approach
is effective for one task, it is also available for the other. Gaus-
sian mixture model (GMM)-based VC, which is a successful
traditional approach that has been proposed for speaker identity
conversion [8, 9], has also been successfully applied to emotion

conversion [10, 11]. Recent research trends have focused on
artificial neural network models such as a restricted Boltzmann
machine (RBM) [12], a variational autoencoder (VAE) [13, 14],
and a generative adversarial net (GAN) [15, 16, 17, 18].

However, despite the several common points among the two
tasks, there are currently no methods for simultaneous conver-
sion of speaker identity and emotion. We feel that representing
a speaker identity domain and an emotion domain explicitly in
a single model would be beneficial because it leads to suppress-
ing the influence of the other domain when the model repre-
sents one domain. With this assumption as our motivation, we
propose a multiple-domain adaptive RBM (MDARBM) that en-
ables simultaneous conversion of speaker identity and emotion
by separating the two domains.

An MDARBM-based VC is an expansion of the adap-
tive restricted Boltzmann machine (ARBM)-based VC [12].
An ARBM is an energy-based model consisting of a visible
layer and a hidden layer having undirected connections between
visible-hidden units. By decomposing the weight matrix of the
connections into a class-specific factor (adaptation matrix) and
an independent factor (class-independent weight matrix), this
model can encode the distributions of visible features from dif-
ferent classes into class-independent distributions of hidden fea-
tures. Conversion is performed by switching the adaptation ma-
trices from source class one to target class one when the model
reconstructs visible features from the encoded distributions of
hidden features. By decomposing the weight matrix in the same
way as a mathematical formulation for an ARBM, we can fur-
ther introduce adaptation matrices for multiple other domains.
An MDARBM is a model in which the weight matrix is de-
composed into two or more class-specific factors and a class-
independent factor to make it adaptable to two or more domains.

An RBM (and its expansion models) consists of small net-
work architectures compared to other neural networks such as
VAEs or GANs; however, we assume that this is a critical ad-
vantage of using an expansion of an ARBM-based VC for de-
veloping a simultaneous conversion system. When developing
such a system with VAEs or GANs, it might be necessary to
implement additional generator or classifier modules for each
added domain. As each of the modules usually consists of at
least hundreds or thousands of parameters to be learned, train-
ing such a system might be unstable or fail, especially when the
number of available training samples is limited. We argue that
the expansion of ARBM is reasonable for the first attempt to
develop a simultaneous conversion framework.

2. Conventional method
RBM-based [19, 20] probabilistic models are used for repre-
senting latent features that cannot be observed but certainly
exist in the background. The RBM was originally introduced
as an undirected graphical model that defines the distribution
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of binary-visible variables with binary-hidden variables, and
was later extended to deal with real-valued data, known as the
Gaussian-Bernoulli RBM (GBRBM) [20].

In an ARBM model, observed visible features and hidden
features are represented as visible units v ∈ RI and hidden
units h ∈ {0, 1}J , respectively (I and J denote the number
of dimensions in the visible and hidden units, respectively). In
addition to visible and hidden units, this model has class iden-
tifier units s ∈ {0, 1}R,

∑R
r=1 sr = 1 (R is the number of

classes in a domain). In an ARBM, the visible-hidden weights
are adapted to a certain class in a domain using its adaptation
matrix Ar controlled by s. The class-specific visible-hidden
connections W(s), visible biases b(s), and hidden biases c(s)
are defined as

W(s) =
∑
r

ArsrW̄ (1)

b(s) = b̄+
∑
r

brsr = b̄+ Bs (2)

c(s) = c̄+
∑
r

crsr = c̄+ Cs, (3)

where W̄ ∈ RI×J , b̄ ∈ RI , and c̄ ∈ RJ are class-independent
parameters and Ar ∈ RI×I , br ∈ RI(B = [b1 b2 · · · bR] ∈
RI×R), and cr ∈ RJ(C = [c1 c2 · · · cR] ∈ RJ×R) are
class-specific parameters of the rth class. br and cr denote the
class-specific bias of the rth class for the visible and hidden
units, respectively. For convenience, we use the symbol A =
{Ar}Rr=1 to denote a collection of the adaptation matrices.

Given the class information s, the joint probability of visi-
ble and hidden units p(v,h|s) is derived as

p(v,h|s) =
1

Z
e−E(v,h|s) (4)

E(v,h|s) =
1

2

∣∣∣∣∣∣∣∣v − b(s)σ

∣∣∣∣∣∣∣∣2 − ( vσ2

)>
W(s)h− c(s)>h

(5)

Z =

∫
v

∑
h

e−E(v,h|s)dv, (6)

where ||·||2 denotes the L2 norm. The fraction bar in Eq. (5) de-
notes the element-wise division. σ is the deviation parameter of
the visible units. The parameters Θ = {W̄,A,B,C, b̄, c̄,σ}
are simultaneously estimated on the basis of maximum likeli-
hood.

The lack of connections between visible units or between
hidden units enable the conditional probabilities p(h|v, s) and
p(v|h, s) to form simple equations:

p(vi = v|h, s) = N (v | bi(s) +wi:(s)h, σ
2
i ) (7)

p(hj = 1|v, s) = S
(
cj(s) +w:j(s)

>
( v
σ2

))
, (8)

wherewi:(s) andw:j(s) denote the ith row vector and jth col-
umn vector of W(s), respectively. N (·|µ, σ2) and S(·) denote
a Gaussian probability density function with the mean µ and
variance σ2 and a sigmoid function, respectively.

In the converting step, the source class’s visible features
x(t) at frame t can be converted into those of the target class
y(t) via hidden features ĥ(t) so as to maximize the probability
p(y(t)|x(t)), as

ŷ(t) , argmax
y(t)

p(y(t)|x(t))

' b̄+ by + AyW̄ĥ(t),

(9)

Figure 1: Graphical representation of multiple-domain adap-
tive RBM.

where

ĥ(t) , argmax
h(t)

p(h(t)|x(t))

' S
(
c̄+ cx + W̄>A>x

(
x(t)

σ2

))
.

(10)

As Eq. (10) indicates, the (optimum) hidden features are ap-
proximated as the expectation values of p(h(t)|x(t)), which re-
sults in the sigmoidal outputs of affine-transformed visible fea-
tures of the source class projected with the matrix W̄>A>x . As
the column vectors of this matrix are similar to the patterns
that appear in the source class’s visible features, the obtained
hidden features ĥ represent class-independent information that
is potentially phonological features when the acoustic features
are input as visible features. Eq. (9) shows that the converted
speech is generated from the phonological information that is
projected to the acoustic feature space using the weight matrix
adapted to the target class of a certain domain (e.g., speaker or
emotion).

3. Multiple-domain adaptive RBM
Our proposed multiple-domain adaptive RBM (MDARBM),
depicted in Fig. 1, is a model that has multiple class iden-
tifier units. In this paper, the number of class identifier units
D(≥ 2) is set to two, and we use s for speaker-identity units
and e for emotion units. The speaker-emotion-specific visible-
hidden connections W(s, e), visible biases b(s, e), and hidden
biases c(s, e) are defined as

W(s, e) =
∑
q

Ae
qeq
∑
r

As
rsrW̄ (11)

b(s, e) = b̄+
∑
r

brsr +
∑
q

bqeq

= b̄+ Bss+ Bee (12)

c(s, e) = c̄+
∑
r

crsr +
∑
q

cqeq

= c̄+ Css+ Cee, (13)

where As
r , Ae

q ∈ RI×I , br ∈ RI(Bs = [bs1, b
s
2, · · · , bsR] ∈

RI×R), bq ∈ RI(Be = [be1, b
e
2, · · · , beQ] ∈ RI×Q), cr ∈

RJ(Cs = [cs1, c
s
2, · · · , csR] ∈ RJ×R), and cq ∈ RJ(Ce =

[ce1, c
e
2, · · · , ceQ] ∈ RJ×E) are speaker and emotion-specific

parameters (R and Q indicate the number of speakers and emo-
tions, respectively). The decomposition order of the speech fac-
tors in Eq. (11) is derived from our assumption that an emotion
would be a more global aspect of speech than a speaker identity.
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Table 1: Performance of ARBM-based VC in Exp. 1: Per-
centage distributions of listener’s responses for speaker-identity
converted speech.

Response
F1 M1 F2 M2

F1 N/AM1
Target F2 37.8 20.5 37.1 4.6

M2 8.3 55.6 3.0 33.1

Given the speaker-identity and emotion units, the joint
probability of visible and hidden units p(v,h|s) is derived as

p(v,h|s, e) =
1

Z
e−E(v,h|s,e) (14)

E(v,h|s, e) = ‖v − b(s, e)

2σ
‖2

− c(s, e)Th− (
v

σ2
)TW(s, e)h (15)

Z =

∫
v

∑
h,s,e

e−E(v,h|s,e)dv. (16)

Therefore, conditional probabilities p(h|v, s, e) and
p(v|h, s, e) are calculated as

p(hj = 1|v, s, e) = S(cj(s, e) + W(s, e)T:j(
v

σ2
)) (17)

p(vi = v|h, s, e) = N (v|bi(s, e) + W(s, e)i:h, σ
2
i ). (18)

In the converting step, the same as with an ARBM, the
source speaker and emotion visible features x(t) at frame t can
be converted into those of the target speaker and target emotion
y(t) via hidden features ĥ(t) so as to maximize the probability
p(y(t)|x(t)), as

ŷ(t) , argmax
y(t)

p(y(t)|x(t), sx, sy, es, et)

' argmax
y(t)

p(y(t), ĥ(t)|x(t), sx, sy, es, et)

= b̄+ bsy + bet + Ae
tA

s
yW̄ĥ(t),

(19)

where sx, sy and es, et are speaker identity units and emotion
units of source and target speakers/emotions, respectively, bsy
and bet , Ae

t and As
y are target speaker- and emotion-specific

visible biases and adaptation matrices for target emotion and
speaker, respectively, and

ĥ(t) , argmax
h(t)

p(h(t)|x(t), sx, es)

' S
(
c̄+ csx + ces + W̄>As>

x Ae>
s

(
x(t)

σ2

))
.

(20)

In Eq. (20), csx and ces, Ae
s and As

x are source speaker-
and emotion-specific hidden biases and adaptation matrices for
source speaker and emotion, respectively.

4. Evaluation experiments
We conducted subjective experiments to evaluate the proposed
model. Three aspects of performance were evaluated: speaker-
identity conversion (Exp. 1), emotion conversion (Exp. 2), and

Table 2: Performance of MDARBM-based VC in Exp. 1: Per-
centage distributions of listener’s responses for speaker-identity
converted speech.

Response
F1 M1 F2 M2

F1 N/AM1
Target F2 35.8 17.0 45.3 1.9

M2 5.2 48.9 1.5 44.4

simultaneous conversion (Exp. 3). An ARBM-based VC was
utilized as a baseline method.

4.1. Experimental conditions

We trained three independent models: an ARBM for speaker-
identity conversion, an ARBM for emotion conversion, and an
MDARBM for simultaneous conversion. We used the Japanese
Twitter-based Emotional Speech (JTES) [21] dataset, which
consists of about 23 hours and 31 minutes of 50 spoken sen-
tences representing different emotions acted out emotionally by
50 females and 50 males. There were four common emotion
categories: anger, joy, sadness, and neutral. For each speaker,
40 sentences were used for training (0.1% of training data for
validation) and ten sentences were used for testing.

We used 98-dimensional acoustic features consisting of 32-
dimensional Mel-cepstral features and 33 time steps of F0 and
power contours (1 step = 5 ms). Acoustic features were calcu-
lated every 5 ms using the WORLD analyzer [22]. The number
of hidden units was 128 for each model. We trained the base-
line and proposed models for 1,000 epochs using Momentum
SGD [23] with a batch size of 40,000, η = 0.001, and α = 0.9.
The adaptation matrices for the neutral emotion were fixed iden-
tity matrices and were not updated while training.

In the synthesizing phase, the WORLD vocoder synthe-
sized acoustic signals from the time series of original aperiod-
icity features, converted Mel-cepstral features, F0, and power.
The time series of F0 and power were obtained from converted
F0 and power contours using an overlap-add technique [24].

4.2. Performance of speaker-identity conversion (Exp. 1)

In the first experiment, we evaluated the performances of
speaker-identity conversion. Two females (F1, F2) and two
males (M1, M2) were randomly selected from the corpus. We
set four conversion pairs: F1 to F2, F1 to M2, M1 to F2, and
M1 to M2. The emotion of all the source speech was neutral.
Eight listeners participated in the experiment. Before the exper-
imental trial, listeners learned to identify the four speakers from
the sample speech. Each speaker was associated with a distinct
name: F1, F2, M1, and M2. Following the initial familiariza-
tion, listeners undertook a 128-item speaker identification test
in which they identified the voices without feedback. The pre-
sented speech consisted of speech converted with the baseline
method and the proposed method and original source and target
speech. Emotion conversion was performed only in the pro-
posed method (from neutral to neutral/joy/anger/sadness), but
we didn’t provide any instruction about speech emotion to the
listeners.

Tables 1 and 2 show the results. The identification rates for
target speakers were improved in the proposed method: from
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Table 3: Performance of ARBM-based VC in Exp. 2: Percent-
age distributions of listener’s responses for emotion converted
speech.

Response
Neutral Joy Anger Sadness

Neutral 39.7 10.3 15.5 34.5
Joy 22.0 30.5 6.8 40.7

Target Anger 22.8 21.1 7.0 49.1
Sadness 31.5 14.8 14.8 38.9

Table 4: Performance of MDARBM-based VC in Exp. 2: Per-
centage distributions of listener’s responses for emotion con-
verted speech.

Response
Neutral Joy Anger Sadness

Neutral 40.7 16.9 11.9 30.5
Joy 33.9 33.9 12.5 19.6

Target Anger 41.4 13.8 13.8 31.0
Sadness 49.0 3.9 17.6 29.4

37.1% to 45.3% in the X to F2 conversion and from 33.1% to
44.4% in the X to M2 conversion. These results indicate that
emotion conversion performed in the background does not dis-
turb but rather enhances the main task (speaker-identity conver-
sion in this case).

4.3. Performance of emotion conversion (Exp. 2)

In Exp. 2, we evaluated the performances of emotion conver-
sion. The source and target speakers were the same as in Exp. 1.
Converted speech of the proposed method was synthesized in
the same manner as Exp. 1 and that of the baseline method was
synthesized with the ARBM trained with emotion units. Seven
listeners participated in the experiment. Listeners undertook a
128-item speech emotion identification test in which they iden-
tified emotions from neutral, joy, anger, and sadness.

Tables 3 and 4 show the results. Consistent with the results
of Exp. 1, the performance of emotion conversion was improved
in the proposed method except for the neutral-to-sadness con-
version. These results also support the idea that one conversion
task is enhanced by the other task when performed simultane-
ously.

4.4. Performance of simultaneous conversion (Exp. 3)

In Exp. 3, we evaluated the performances of speaker-identity
and emotion conversion. The source and target speakers were
the same as in Exp.1. Converted speech of the proposed method
was synthesized in the same manner as Exp. 1. For the base-
line method, we performed speaker-identity conversion using
the ARBM trained with speaker-identity units followed by per-
forming emotion conversion using another ARBM trained with
emotion units.

Two types of XAB tests, speaker identity XAB and emotion
XAB, were conducted. In the XAB test, X indicates the target
reference speech. Paired speech (A and B) from the proposed
and baseline methods with the same text content as the reference
were presented and the listeners were asked to determine which

2080 60 40 1090 70 50 30 0100

Preference score of MDARBM [%]

F1 to F2

M1 to M2

M1 to F2

F1 to M2

8020 40 60 9010 30 50 70 1000
Preference score of ARBM [%]

Figure 2: Speaker identity XAB test results for each conversion
pair in Exp. 3. Baseline vs. proposed.

2080 60 40 1090 70 50 30 0100

Preference score of MDARBM [%]

Neutral

Sadness

Anger

Joy

8020 40 60 9010 30 50 70 1000
Preference score of ARBM [%]

Figure 3: Emotion XAB test results for each target emotion in
Exp. 3. Baseline vs. proposed.

one was closer to the reference speaker/emotion. The number
of trials was 64 for each test. Nine and ten listeners participated
in the speaker identity XAB test and the emotion XAB test,
respectively.

Figures 2 and 3 show the results of the XAB tests. The
proposed method outperformed the baseline method for both
speaker-identity conversion and emotion conversion. These re-
sults strongly support the finding that the performance improve-
ments in the proposed method observed in Exps. 1 and 2 were
brought about by the simultaneous conversion.

5. Conclusion
In this paper, we have proposed a multiple-domain adaptive
RBM that enables simultaneous conversion of multiple domains
of speech by decomposing the visible-hidden connections of the
RBM into two or more domain-specific factors and a domain-
independent factor. To the best of our knowledge, this study
is the first to develop a method for simultaneous conversion of
speaker identity and emotion. The results of the two experi-
ments showed that the performance of the one domain conver-
sion task was enhanced by the other task. The results of an addi-
tional experiment confirmed that this enhancement was brought
about by simultaneous conversion. We feel a simultaneous con-
version framework is beneficial for learning the characteristics
of a certain aspect of speech while reducing the effects from
the other aspects. This will encourage the utilization of training
speech samples consisting of diverse aspects such as speaker
identity, speaking styles, and more.
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