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Abstract
This paper proposes a nonparallel emotional speech conversion
(ESC) method based on Variational AutoEncoder-Generative
Adversarial Network (VAE-GAN). Emotional speech conver-
sion aims at transforming speech from one source emotion to
that of a target emotion without changing the speaker’s iden-
tity and linguistic content. In this work, an encoder is trained
to elicit the content-related representations from acoustic fea-
tures. Emotion-related representations are extracted in a su-
pervised manner. Then the transformation between emotion-
related representations from different domains is learned us-
ing an improved cycle-consistent Generative Adversarial Net-
work (CycleGAN). Finally, emotion conversion is performed
by eliciting and recombining the content-related representations
of the source speech and the emotion-related representations of
the target emotion. Subjective evaluation experiments are con-
ducted and the results show that the proposed method outper-
forms the baseline in terms of voice quality and emotion con-
version ability.
Index Terms: Emotional Speech Conversion, Variational Au-
toEncoder, Generative Adversarial Network, Supervised Learn-
ing, Style Transfer

1. Introduction
Human speech conveys more information, such as speaker iden-
tity and speaking style, than just linguistic content. Voice con-
version (VC) is a technique which changes speaker identity of
the speech while preserving its linguistic content [1]. Some
other techniques have been studied to modify the speaking style,
such as speaker’s emotion [2] or accent [3]. In this paper, we fo-
cus on emotional speech conversion (ESC), which aims at trans-
forming speaker’s emotion of a speech utterance while keeping
speaker identity and linguistic content unchanged. ESC can be
applied to many fields, such as generating more natural and ex-
pressive speech, improving user experience in human-computer
interactions, or hiding negative emotions in social occasions.

Various methods have been proposed for ESC, including
rule-based approaches [2], Gaussian Mixture Model (GMM)-
based approaches [4] and neural network-based approaches [5].
While these methods have demonstrated their effectiveness,
they require accurately-aligned parallel data. Collecting par-
allel data and aligning the source and target utterances can be
costly and time-consuming. For VC task, many methods have
been studied to sidestep these issues [6, 7, 8, 9, 10, 11]. Meth-
ods based on Variational AutoEncoder (VAE) and its variants
were proposed to disentangle and model latent representations
for speech [6, 7, 8, 9]. In these methods, the conversion pro-
cess was decomposed into encoding and decoding stages, and
aligned frame pairs or even parallel corpora were no longer nec-
essary . In [10], adversarial training was adopted to the VAE-
based framework to make the generated spectra more realis-
tic. An improved version of cycle-consistent Generative Ad-

versarial Network (CycleGAN) was proposed in [11], making
the method free of parallel data.

Although methods using nonparallel data for VC have been
widely studied, corresponding researches for ESC are still in-
adequate. A pioneering work was done in [12], which achieved
nonparallel training using an unsupervised style transfer tech-
nique. A variant of GAN was adopted to improve the quality
of the converted speech. That work is inspiring, but there still
remains a gap between the converted speech and the real target
in terms of quality and emotion fidelity, partly because of the ar-
chitecture of the GAN and the unsupervised way in the extrac-
tion of the style code. Recently, a framework using multitask
learning with text-to-speech (TTS) was proposed [13], focusing
mainly on the preservation of the linguistic content.

The contribution of this paper is two-fold. Firstly, an
improved CycleGAN (noted as CycleGAN2 below for brief-
ness) proposed for VC is adopted in VAE-GAN framework for
ESC. Secondly, a supervised strategy to extract more reliable
emotion-related representations is proposed. Subjective evalu-
ations are conducted on IEMOCAP database [14] and the ex-
perimental results show that the proposed method outperforms
the baseline in terms of voice quality and emotion conversion
ability of the converted speech.

The rest of this paper is organized as follows. Section 2 pro-
vides a brief overview of the models used in our work. Section
3 introduces our proposed methods in detail. Experimental re-
sults and conclusions are given in Section 4 and 5, respectively.

2. Related work
2.1. Variational AutoEncoder (VAE)

VAE can be viewed as a variant over vanilla AutoEncoder,
which has a more understandable and controllable latent space.
The training process of a VAE, after introducing some necessary
simplification, approximation and the re-parameterization trick,
is equivalent to finding the optimal parameters that maximize
the variational lower bound:

{θ∗, φ∗} = argmax
θ,φ

{−DKL(qφ(ẑ|x)||p(z))

+ log pθ(x|ẑ, y)},
(1)

where θ and φ is the set of decoder parameters and encoder
parameters, respectively; DKL(·||·) is the Kullback-Leibler di-
vergence; qφ(·) is the variational posterior; p(·) is the true prior;
x is the training data; y is the attribute representation; z is the
latent representation; ẑ is the drawn sample.

2.2. CycleGAN2

Considering two acoustic feature sequences, x ∈ RQ×Tx and
y ∈ RQ×Ty from source X and target Y , where Q is the fea-
ture dimension and Tx and Ty are the sequence lengths, respec-
tively. CycleGAN2 seeks to learn a mapping function GX→Y ,
which converts x ∈ X into y ∈ Y without the need of parallel
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data. This method uses an adversarial loss [15] and a cycle-
consistency loss [16]. Additionally, to preserve the linguistic
information, an identity-mapping loss [17] is added.
Adversarial loss: Conventional adversarial loss is used to make
the generated featureGX→Y (x) indistinguishable from the real
target y:

Ladv(GX→Y , DY ) = Ey∼PY (y)[logDY (y)]

+ Ex∼PX (x)[log(1−DY (GX→Y (x)))],
(2)

where the discriminator DY and the generator GX→Y try to
find an equilibrium in this min-max game. Ladv(GY→X , DX)
has an analogous form. This adversarial loss helps to allevi-
ate the over-smoothing effect, but this is not enough, because
the L1-norm used in the cycle-consistency loss (see below) still
causes over-smoothing. To mitigate this problem, an additional
discriminator D

′
X is introduced and an additional adversarial

loss is defined on the circularly generated feature:

Ladv2(GX→Y , GY→X , D
′
X) = Ex∼PX (x)[logD

′
X(x)]

+ Ex∼PX (x)[log(1−D
′
X(GY→X(GX→Y (x))))].

(3)

Similarly, D
′
Y and Ladv2(GY→X , GX→Y , D

′
Y ) can be intro-

duced. As two adversarial losses (Ladv(·) andLadv2(·)) are de-
fined, the authors in [11] call them two-step adversarial losses.
Cycle-consistency loss: The output of GX→Y (x) is guided to
follow the distribution of the real target under the restriction
of the two-step adversarial losses. The linguistic consistency
between input and output features, however, may not be guar-
anteed. Therefore, a cycle-consistency loss is used as a further
regularization for the mapping:

Lcyc(GX→Y , GY→X) =

Ex∼PX (x)[||GY→X(GX→Y (x))− x||1]
+ Ey∼PY (y)[||GX→Y (GY→X(y))− y||1],

(4)

where the bidirectional mappings are trained simultaneously,
and thus training can be more stable. || · ||1 means the L1-norm.
Identity mapping loss: An identity-mapping is adopted to reg-
ularize the generator to be close to an identity mapping when
real samples of the target domain are provided as the input:

Lid(GX→Y , GY→X) = Ey∼PY (y)[||GX→Y (y)− y||1]
+ Ex∼PX (x)[||GY→X(x)− x||1].

(5)

The intuition behind this is that the model is supposed to pre-
serve the input if it already looks like from the target domain.

CycleGAN2 employs an architecture called 2-1-2D Convo-
lutional Neural Networks (CNN) for the generator network. A
2D CNN is thought to be better suited for converting features
while preserving the original structures, as it restricts the con-
verted region to local. In this network, 2D convolution is used
for downsampling and upsampling, and 1D convolution is used
for the main conversion process (i.e., residual blocks [18]).

For the discriminator, CycleGAN2 uses PatchGAN [19],
which adopts convolution at the last layer and determines the
realness on the basis of the patch. The main advantage is that
less parameters are needed.

2.3. VAE-GAN

VAE [20] and GAN [15] are two mainstream generative models
which have been studied deeply. These two models have their
own advantages and drawbacks. In image generation tasks, for
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Figure 1: Overview of VAE-GAN system. The decoder of VAE
is viewed as the generator of GAN.

example, VAE tends to generate normal but blurred samples;
the outputs of the GAN are usually quite clear but sometimes
can be weird-looking. Therefore, VAE-GAN [21] has been pro-
posed to overcome the drawbacks of each model, while their
advantages are maintained. A typical architecture of a VAE-
GAN is illustrated in Fig. 1.

2.4. Feature Selection and Representation Disentanglement
in ESC

Previous studies on ESC usually handle acoustic features ex-
tracted by a vocoder such as STRAIGHT [22] or WORLD [23].
In [2], four acoustic features, namely F0 contour, spectral se-
quence, duration and power envelop were explored. In [12], F0

contour, spectral sequence and aperiodicity were extracted and
conversion methods for the former two features were investi-
gated. This paper focuses on the conversion models for F0 and
spectral features.

3. Proposed Method
The schematic diagram of the proposed method is shown in
Fig. 2. Three acoustic features, namely spectral features, F0

values and aperiodicity, are used. WORLD [23] is adopted as
the vocoder for acoustic feature extraction and speech wave-
form reconstruction in this paper. The spectral features at each
frame are represented by Mel-cepstral coefficients (MCEPs).
F0 values and aperiodicity are also extracted by WORLD anal-
ysis. Considering their different properties, the three acoustic
features are converted using separate models in our method.
We convert F0 values through logarithm Gaussian normalized
transformation [24] defined as:

ftrg = exp((log fsrc − µsrc) ∗
σtrg
σsrc

+ µtrg), (6)

where fsrc, µsrc, σsrc and ftrg , µtrg, σtrg are the F0, mean
and standard deviation from the source and target emotion set,
respectively. We do not modify aperiodicity since it has little
impact on emotion conversion.
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Figure 2: Diagram of the proposed conversion method

For spectral features, we train the VAE-GAN-based con-
version model shown in Fig. 3. The main idea of the conver-
sion method is to extract content-related representations in an
unsupervised manner, and to extract emotion-related represen-
tations in a supervised way. In this paper, emotion labels are
explicitly used during training and conversion. Emotion-related
representations are extracted from an embedding layer, which
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Figure 3: Model Architecture of Encoder, Decoder and Dis-
criminator. k, c and s denote kernel size, number of channels
and stride size. “Conv”, “GLU”, “IN”, “AdaIN”, “PS”, “Sig-
moid” denote convolution, gated linear unit, instance normal-
ization, adaptive instance normalization, pixel shuffler and sig-
moid layers, respectively. Cx andLj denote the content of input
X and the target label of emotion j, respectively. Note that the
last layer of the decoder is a convolution layer.

takes a one-hot vector of emotion as input. In the conversion
stage, the content representations from the source speech and
the emotion-related representations from the target speech are
injected into the network to generate the desired speech. Theo-
retically, this idea is based on two assumptions:

1. Different speech of the same emotion share the same
emotion-related representations.

2. The emotion-related representations from speech of dif-
ferent emotions are different.

The conversion model consists of three parts: an encoder, a
decoder (or generator) and a discriminator. The encoder learns
to encode the spectral features into content-related representa-
tions. The emotion labels of spectral feature segments are cat-
egorical features and encoded into emotion-related representa-
tions with embedding layers. These representations are then
fed into the decoder, together with the output of the encoder.
The discriminator receives the output of the decoder to judge
whether it is from real data. The combination of the latter two
parts, i.e. the decoder and the discriminator, can be viewed as a
variant of CycleGAN2.

The encoder outputs the mean and variance of the latent
vector, denoted as µz and σ2

z , respectively. A KL loss is intro-
duced to reduce the gap between the variational posterior and
the true prior. In this work, z is chosen to follow the isotropic
standard normal distribution. So the KL loss is defined in a
closed-form:

LKL(qφ(ẑ|x)||p(z)) = −
1

2

D∑
d=1

(1 + log σ2
zd − µ

2
zd − σ

2
zd),

(7)

where D is the dimension of the latent space. The goal of the
proposed method is to minimize the following loss function:

L = Ladv(GX→Y , DY ) + Ladv(GY→X , DX)

+ Ladv2(GX→Y , GY→X , D
′
X) + Ladv2(GY→X , GX→Y , D

′
Y )

+ λcycLcyc(GX→Y , GY→X) + λidLid(GX→Y , GY→X)

+ LKL(qφ(ẑ|x)||p(z)),
(8)

where λcyc and λid are weights, and each term is presented in
Eqn.2-5 and Eqn.7.

4. EXPERIMENTS
4.1. Experimental Setup

The IEMOCAP database [14] was used in our experiments.
This database was recorded from ten actors in dyadic sessions
for the purpose of studying expressive dyadic interaction from
a multimodal perspective. The corpus contains approximately
12 hours of audio data and the emotion of each audio file is
annotated into categorical labels by multiple annotators. Nine
different emotions are included in the corpus. In this paper, we
investigated four of them: angry, happy, sad and neutral. Since
the number of labeled speech utterances in terms of their emo-
tion is limited in general scenarios, we randomly selected 30
utterances for each of the four emotions from one speaker to
form the training set.

The waveforms of the database were in 48 kHz PCM format
and were downsampled to 16 kHz. Training samples with fixed
length of 128 frames were randomly selected from the raw au-
dio sequences. 24-order Mel-cepstral coefficients (MCEPs), 1-
order logarithmic F0 values and 513-order aperiodicity features
were extracted using WORLD vocoder. The window length
was 40ms and the frame shift was 5ms. The source and target
MCEPs were normalized to zero-mean and unit-variance per
dimension, using the statistics of the training set. λcyc and λid
were empirically set to 10 and 5, respectively.

4.2. Network Architectures

The encoder network comprised of four convolutional layers
and four residual blocks, and four adaptive residual blocks with
four convolutional layers were used for the decoder network.
There were six conventional layers and one sigmoid layer in the
discriminator network. Instance normalization (IN) [25] was
used to remove the emotion and speaker information while pre-
serving content information for the encoder. All models were
trained using Adam optimizer [26] with the momentum term
β1 of 0.5 and β2 of 0.999. The batch size was set to 1. The ini-
tial learning rate was set to 0.0002 for the encoder and decoder
and 0.0001 for the discriminator, respectively. The detailed in-
formation of network architecture is depicted in Fig. 3.

4.3. Experimental Results

Three groups of subjective evaluations were conducted to inves-
tigate the performance of the proposed method on voice quality,
speaker similarity and emotion conversion ability, respectively
1. The method proposed in [12] was chosen as the baseline.

1Examples of converted speech in our experiments can be found at
https://siyizhou.github.io/CYX2019/index.html
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Figure 4: MOS test for voice quality and speaker similarity with
95% confidence interval. (a): voice quality. (b): speaker simi-
larity. “2ang” means the target emotion is angry. “GT” means
the ground truth.

4.3.1. Voice Quality and Speaker Similarity

To evaluate voice quality and speaker similarity, Mean Opin-
ion Scores (MOS) tests were conducted. Each conversion to
one emotion from the other three emotions were investigated,
making 12 groups of conversion (4 × 3 = 12). For each of
the 12 groups of conversion, 5 utterances from the test set were
randomly selected, and there were 180 stimuli in total. Thirty
listeners were recruited and they were asked to assign a score
of 1-5 (5: excellent and 1: bad) to each stimulus. Two-tailed
paired t-test was conducted to evaluate the significance of each
MOS test.

The evaluation results of the voice quality and speaker sim-
ilarity MOS tests are shown in Fig. 4. Fig. 4(a) shows that the
proposed method outperforms the baseline in all four groups
of conversion on voice quality. The t-test shows that all the
p-values were less than 0.05, indicating the differences are sig-
nificant. This demonstrates that the proposed method can im-
prove the quality of converted speech, mainly because of the
two-step adversarial loss adopted in CycleGAN2 which alle-
viates the over-smoothing effect. It is worth mentioning that
the gap between the proposed method and the ground truth is
big. This can be due to the background noise and reverbera-
tion in the recordings, which degrades the modeling accuracy
greatly. From Fig. 4(b), we can see that both the proposed
method and the baseline can achieve close quality with natural
speech in terms of speaker similarity. Notably, all the ratings for
the proposed method have exceeded 90% of those for original
recordings, which proves the effectiveness of the proposed con-
version system. The superiority of the proposed method over
the baseline, however, is not significant according to the t-test.
We expect to boost the performance by introducing some mod-
ules which explicitly handle speaker identity’s information in
the future.

4.3.2. Emotion Conversion Ability

The emotion conversion ability of the proposed method was
evaluated subjectively. We assessed all the possible conversion
combinations of the four emotions (12 conversion pairs in total)
and randomly selected 10 utterances from the test set for each
conversion pair. Thirty subjects were asked to listen to these
utterances and judge which emotion each utterance belonged
to. We counted the subjects’ votes and the results are summa-
rized in Table 1. We can see that not all of the converted speech
could be perceived correctly in terms of emotion. One reason
is that part of emotions are conveyed by linguistic information,
which can not be handled by the proposed method. The results
of conversion with angry, sad and neutral as target are accept-
able, which demonstrates the emotion conversion ability of the
proposed method. However, conversion to happy did not per-

form well. This suggests that different emotions have their own
properties, and specific operation for happy may be needed.

We also compared the proposed method and the baseline
on emotion conversion ability. Thirty subjects participated the
test and the results are exhibited in in Fig. 5. The proposed
method outperforms the baseline in almost all the conversions
except happy-to-angry and has a significantly higher average
percentage change (45.81% vs 41.86%). This indicates the im-
portance of the supervised manner used, which makes the ex-
tracted emotion-related representations more reliable.

Table 1: Percentage change from source emotion to target emo-
tion. Higher value indicates stronger conversion ability. For
example, the first row means that in the conversion from neutral
to angry, 44.67% converted speech are labeled ”angry”, 0%,
22.00% and 33.33% converted speech are labeled ”happy”,
”sad” and ”neutral”, respectively, by the listeners.

ang hap sad neu

2ang
neu ang 44.67% 0 22.00% 33.33%
sad ang 48.33% 0 27.33% 24.33%
hap ang 38.00% 46.00% 0 16.00%

2hap
ang hap 50.33% 37.00% 3.33% 9.33%
sad hap 6.00% 38.00% 41.67% 14.34%
neu hap 0 34.33% 27.00% 38.67%

2sad
hap sad 7.00% 34.67% 31.33% 27.00%
ang sad 27.00% 0 47.33% 25.67%
neu sad 4.33% 9.67% 49.67% 36.33%

2neu
hap neu 0 36.00% 3.33% 60.67%
ang neu 29.33% 0 7.33% 63.33%
sad neu 0 0 43.00% 57.00%
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Figure 5: Comparison of emotion conversion ability. Emotion
state angry, happy, neural and sad is denoted as “a”, “h”, “n”
and “s” respectively. For example, “a2s” means the conversion
from angry to sad.

5. Conclusions
We propose a novel method for emotional speech conversion. In
this method, a VAE-GAN network is used to elicit the content-
related and emotion-related representations in the training stage
and recombine them in the conversion stage. Convincing emo-
tion labels are used to make supervised learning possible. Fu-
ture works will focus on seeking more effective techniques to
extract emotion-related representations and adopting a neural
vocoder to further boost the voice quality of converted speech.
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