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Abstract

We introduce a novel method for emotion conversion in speech

that does not require parallel training data. Our approach

loosely relies on a cycle-GAN schema to minimize the recon-

struction error from converting back and forth between emo-

tion pairs. However, unlike the conventional cycle-GAN, our

discriminator classifies whether a pair of input real and gen-

erated samples corresponds to the desired emotion conversion

(e.g., A → B) or to its inverse (B → A). We will show that

this setup, which we refer to as a variational cycle-GAN (VC-

GAN), is equivalent to minimizing the empirical KL divergence

between the source features and their cyclic counterpart. In ad-

dition, our generator combines a trainable deep network with

a fixed generative block to implement a smooth and invertible

transformation on the input features, in our case, the fundamen-

tal frequency (F0) contour. This hybrid architecture regularizes

our adversarial training procedure. We use crowd sourcing to

evaluate both the emotional saliency and the quality of synthe-

sized speech. Finally, we show that our model generalizes to

new speakers by modifying speech produced by Wavenet.

Index Terms: Adversarial Networks, Unsupervised Learning,

Emotion Conversion, Deformable Registration

1. Introduction

From automated customer support to hand-held devices, speech

synthesis plays an important role in modern-day technology.

While speech synthesis has undergone revolutionary advance-

ments over the past few years, generating emotional cues re-

mains an open challenge in the field. Emotional speech synthe-

sis has the potential to facilitate more natural and meaningful

human-computer interactions, and it provides a foundation for

studying human intent, perception, and behavior [1].

The success of deep neural networks has brought about a

swift change in how speech synthesis is approached. Deep

neural networks can generate natural sounding speech given

enough training examples [2, 3, 4]. However, these models

have little control over the speaking style, including emotional

inflection. One reason is the lack of training data to learn net-

works specific to each emotional class. Unsupervised models

such as [5, 6] provide a promising middle ground by separat-

ing the speaking style from the content. However, it is difficult

to tune the parameters of these models to synthesise speech in

a predetermined emotion. Furthermore, the synthesis rate of

these state-of-the-art models is slow due to their autoregressive

scheme [7]. These limitations motivate the use of emotion con-

version as an alternative to end-to-end synthesis. Broadly, the

goal of emotion conversion is to modify the perceived affect

of a speech utterance without changing its linguistic content or

speaker identity. It allows a user greater control over the speak-

ing style while being easy to train on limited data resources.

Emotional cues in speech are conveyed through vocal in-

flections known as prosody. Key attributes of prosody include

the fundamental frequency (F0) contour, the relative energy of

the signal, and the spectrum [8]. Many supervised and unsu-

pervised algorithms have been proposed for emotion conver-

sion. For example, the work of [9] proposed a Gaussian mixture

model (GMM) to jointly model the source and target prosodic

features. During inference, the target features are estimated

from the source via a maximum likelihood optimization. A re-

cent approach by [10] uses a Bidirectional LSTM (Bi-LSTM)

to predict the spectrum and F0 contour. To overcome the data

limitation, the authors pre-train their model on a voice conver-

sion dataset and then fine-tune it for emotion conversion. The

prosodic manipulation proposed by [11, 12] uses a highway

neural network to predict the F0 and intensity for each frame

of the input utterance. While these models have made signif-

icant contributions to the field, they require parallel emotional

speech data for training, which limits their generalizability.

An unsupervised technique to disentangle style and content

from speech has been proposed by [13]. This algorithm uses ar-

chitecture based priors to separate style and content from spec-

trum while modifying the F0 using a linear Gaussian model.

The authors of [14] offer a simpler cycle-GAN model for non-

parallel emotion conversion, which independently modifies the

spectrum and F0 contour. The latter is parameterized via a

wavelet transform, which expands the input feature dimension-

ality. These approaches, however, are trained and evaluated on

single speakers, with no validation on multispeaker conversion.

In this paper, we propose a novel method for non-parallel

emotion conversion that blends the cycle-GAN architecture

with implicit regularization from a generative curve registra-

tion method. Our novel loss function for the F0 conversion

leads to an adversarial training where the discriminator classi-

fies whether a pair of real and generated F0 contours represents

a valid conversion. Another contribution of our model is that the

generator combines a trainable deep neural network with a gen-

erative component to implement a smooth and invertible warp-

ing of the source F0 contour. The entire model is trained jointly

by back-propagating through the generative block to optimize

the parameters. We evaluate our model on the multi-speaker

VESUS dataset [15] and use crowd sourcing to verify both the

emotional saliency and speech quality of the converted utter-

ances. We also demonstrate the generalizability of our model

by converting speech produced by Google Wavenet [2].

2. Method

The foundation of our model is a cycle-GAN [16, 17], which

optimizes the cycle consistency of converting back and forth

between emotions. However, we adapt the traditional cycle-

GAN framework to align the distribution of transformed source

features to the distribution of target features. Accordingly, we

refer to our model as a variational cycle-GAN (VCGAN).
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Figure 1: Block diagram and neural network architectures of VCGAN. The top row shows the neural network used as the stochastic

component of the generators. The bottom left figure shows the deterministic component of generators as represented by an RNN. The

bottom right figure illustrates the architecture of neural network used as discriminator for classifying the joint densities.

2.1. Generator Loss

We train the generators in our VCGAN using three different

loss terms. The first is a cycle consistency loss, which ensures

invertibility of the generator transforms. Formally, let A and B

denote the source and target emotion classes, respectively. In

the context of F0 conversion, the cycle consistency loss ensures

that a given F0 contour, denoted by pA, is close to itself after

undergoing the sequence of transformations A→B→A. Mathe-

matically, this loss is expressed as LC = E[‖pA − pc
A‖1].

Ultimately, the cycle-consistency loss LC , is a sample-

specific loss and only provides a weak coupling between the

two generators after each cyclic transformation. This problem

is exaggerated by the discriminator, which is agnostic to the

presence of a second generator in the cycle-GAN. The infer-

ence process can be improved by recognizing that the input dis-

tribution of one generator is the learnable output distribution

of the other. To leverage this information, we add a KL diver-

gence penalty on the input distribution of a generator and the

target distribution of its complementary generator. It allows us

to exploit the cyclic property at a global level. Specifically, let

pA and pB denote the source and target F0 contours of utter-

ances in emotion A and B, respectively. Let Gγ : pA → pB

and Gθ : pB → pA denote the two generators that transform

the F0 contours between emotional classes. The corresponding

learned data distributions are given by Pγ(pB) and Pθ(pA).
The KL divergence loss for generator Gγ can be expressed as:

LKL = KL
(

P (pA)‖Pθ(pA)
)

(1)

Optimizing this loss provides an additional coupling between

the forward and backward transformations, one that entangles

the two generators beyond cyclic consistency loss. Next, we

show that this loss eliminates the need for the discriminator to

classify samples from the marginal distributions i.e, real vs gen-

erated. By total probability law, we can write Pθ(pA) as:

Pθ(pA) =

∫

Pθ(pA|pB)P (pB) dpB (2)

The integral form in Eq. (2) however, is intractable. To circum-

vent this, we use the variational trick and derive an upper bound

on the KL penalty. Combining Eq. (1) and Eq. (2), we get:

KL =

∫

P (pA) log
P (pA)

∫

Pθ(pA|pB)P (pB) dpB

dpA

= −

∫

P (pA) log

∫

Pθ(pA|pB)Pγ(pB |pA)P (pB)

Pγ(pB |pA)
dpB dpA

− H(pA)

≤ −

∫

P (pA)

∫

Pγ(pB |pA) log
Pθ(pA|pB)P (pB)

Pγ(pB |pA)
dpB dpA

− H(pA)

=

∫

P (pA)

∫

Pγ(pB |pA) log
Pγ(pB |pA)P (pA)

Pθ(pA|pB)P (pB)
dpB dpA (3)

where we have used Jensen’s inequality between the second and

third steps. The ratio of probabilities in Eq. (3) compares the

joint densities of (pA,pB). We estimate this ratio by a dis-

criminator network denoted by Dγ . This discriminator acts as

a global connector between the generators Gγ and Gθ by clas-

sifying the joint densities. Notice that the KL term in Eq. (1)

appears only as a function of parameter θ but the variational

trick allows us to introduce the parameters of Gγ into the pic-

ture. When training Gγ , optimizing the upper bound on KL

divergence is equivalent to minimizing adversarial loss:

LKL ≤ EpA∼P (pA)

[

EpB∼Pγ

[

log
(

Dγ(pA,pB)
)]]

(4)

So far, we have derived the generator loss based on the F0

contour. In practice, we condition the generators on both spec-

trum and F0 contour i.e, Gγ : SA × pA → pB . Here, SA de-

notes the source emotion spectrum. Conditioning on spectrum

allows VCGAN to learn the joint relationship between prosodic

features. We can show that Eq. (3) is also an upper bound to:

ESA

[

KL
(

P (pA|SA)‖Pθ(pA|SA)
)]

(5)

Thus, we minimize the distance between conditional densities

over F0 contours as opposed to the marginal densities in Eq. (1).

The expectation in Eq. (5) averages over the spectral variations.
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Algorithm 1: Warping to generate the target F0 con-

tour given the momenta and source F0 contour

1 function GenerateF0 (m,pA);
Input : momenta m and source F0 pA

Output: target F0 pB

2 Set s = 0, [pB ]
0 = pA and [m]0 = m;

3 if s < 3 then

4 di,j ← [pA]
s
i − [pA]

s
j ;

5 Ki,j ← exp−
(di,j)

2

σ2 ;

6 [pB ]
s+1
i ← [pB ]

s
i +

∑
l Ki,l · [m]sl ;

7 [m]s+1
i ← [m]si + 2 ·

∑
j

−K
σ2 di,j · [m]si [m]sj ;

8 s← s+ 1;

9 else

10 return [pB ]
s;

11 end

2.2. Generative Hybrid Architecture

Adversarial training is susceptible to mode collapse, imbalance

between generator-discriminator losses, and the architecture of

neural networks. Keeping this in mind, we model the gener-

ated target F0 contour as a smooth and invertible warping of

the source F0. Such warpings are also known as diffeomor-

phisms [18, 19] and can be parameterized by low dimensional

embeddings called the momenta [20]. Therefore, our target

F0 estimation is a two-step process: first, we estimate the mo-

menta, and second, we modify the source F0 contour via a de-

terministic warping using momenta. As a result, our generators

can be divided into two blocks, a stochastic component with

trainable parameters and a deterministic component with static

parameters. Specifically, let m denote the latent momenta. The

target F0 is generated by following Alg. 1. The dimensions of

the momenta are the same as F0 contour. The kernel smooth-

ness parameter, σ is empirically fixed at 50 to span the F0’s

range. The warping function can be represented as a recurrent

neural network (RNN) because of its iterative nature (Fig. 1).

The advantage of this hybrid architecture is to stabilize the tar-

get F0 generation. In the absence of any such control mecha-

nism, the F0 contours swing wildly, and causes mode collapse.

We constrain the generators to sample smoothly varying

momenta by adding Lm = E[‖∇m‖2] to the loss. We ap-

proximate the gradient of momenta by its first-order difference.

The final objective for generator Gγ is given by:

LGγ = λcE
[

‖pA − p
c
A‖

]

+ λmE
[

‖∇m‖
2
]

+(1 − λc − λm)E(SA,pA)

[

EpB∼Pγ

[

log
(

Dγ(pA,pB)
)]]

(6)

To update the parameters of the stochastic part of generator net-

work, the gradient back-propagates through the deterministic

block, which is implemented as matrix-vector operations.

2.3. Discriminator Loss

Similar to [21], we model the ratio term in Eq. (3) by a dis-

criminator denoted by Dγ that distinguishes between the joint

distributions of pA and pB learned by Gγ and Gθ , respectively.

During training of the discriminator Dγ , we minimize:

LDγ
= −E(SA,pA)

[

EpB∼Pγ

[

log
(

Dγ(pA,pB)
)]]

− E(SB ,pB)

[

EpA∼Pθ

[

log
(

1−Dγ(pA,pB)
)]]

(7)

Similar discriminators have been proposed in [22, 23] to train

autoencoders in adversarial setting. We use this discriminator

in VCGAN to establish a macro connection between the two

generators. In fact, the optimal discriminators train the corre-

sponding generators to minimize the Jensen-Shanon divergence

between Pγ(pA,pB) and Pθ(pA,pB) [23].

We use the 23 dimensional MFCC features for spectrum

representation over a context of 128 frames extracted using a

5ms long window. The dimensionality of F0 contour is 128x1

while that of spectrum is 128x23. The momenta variable is of

the same dimensionality as F0 which is 128x1. The hyperpa-

rameters were set to λc = 1e-3 and λm = 1e-5. The gener-

ator and discriminator networks are optimized alternately for

one epoch each. We fix the mini-batch size to 1 and the learn-

ing rates are fixed at 1e-4 and 1e-7 for the generators and dis-

criminators, respectively. We use Adam optimizer [24] with an

exponential decay of 0.5 for the first moment. We implement

the sampling process in the generators via dropout during train-

ing and testing. We convert the spectrum separately using a

cycle-GAN proposed by [25]. Code can be downloaded from:

https://engineering.jhu.edu/nsa/links/.

3. Experiments and Results

We evaluate our VCGAN model against three baselines via

crowd-sourcing on Amazon mechanical Turk (AMT). Here, we

play both the neutral speech and the converted speech. The lis-

tener is asked to classify the emotion in the converted speech

and rate its quality on a scale from 1 to 5. We randomize the

samples to weed out any non-diligent worker and identify bots.

3.1. Dataset

We use VESUS dataset [15] to carry out the experiments in this

paper. VESUS contains a set of 250 utterances spoken by 10

actors in multiple emotions. We train one model for each pair

of emotions i.e, neutral to angry, neutral to happy and neutral to

sad. The dataset, also comes with human emotional ratings by

10 AMT workers. These ratings denote the ratio of AMT work-

ers who correctly identify the intended emotion in a recorded

utterance. For robustness, we only use utterances that are cor-

rectly rated as emotional by at least 50% of the total workers.

The number of utterances for each emotion pair are:

• Neutral to Angry conversion: 1534 for training, 72 for

validation and, 61 for testing.

• Neutral to Happy conversion: 790 for training, 43 for

validation and, 43 for testing.

• Neutral to Sad conversion: 1449 for training, 75 for

validation and, 63 for testing.

3.2. Baseline Algorithms

The first baseline is the GMM based joint modeling approach

of [9]. This algorithm learns a mixture model in the joint space

of source and target F0 and spectral features. During inference,

a global variance constraint generates non-smooth target fea-

tures using maximum likelihood. One caveat is that the GMM

fails to generate intelligible speech when trained across multiple

speakers. As a result, our GMM results are based on training

single-speaker models and averaging the results across them.

All other methods are trained on the full multi-speaker data.

The second baseline is the Bi-LSTM approach of [10]. This

method parameterizes the F0 and the energy contours using a

Wavelet transform. Following the authors’ strategy, we pre-

train the model on a voice conversion dataset [26]. It is then

fine-tuned for emotion conversion on the VESUS dataset.
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* * * * * * * *

* * ** * ** *

Figure 2: Confidence of emotion conversion (top) and quality

of reconstructed speech (bottom) on VESUS dataset. Marker ∗
above the bars denote p < 10−2 for a two sample t-test.

* * * * * *

** *

Figure 3: Confidence of emotion conversion (top) and quality

of reconstructed speech (bottom) on wavenet speech. Marker ∗
above the bars denote p < 10−2 for a two sample t-test.

The third baseline is the unsupervised cycle-GAN proposed

by [14]. It modifies the spectrum and F0 contour using two

separate cycle-GANs. As described in [14], wavelet transform

is applied to the F0 contour for expanding dimensionality.

3.2.1. Mixed Speaker Evaluation

Fig. 2 shows the result of our multispeaker emotion conversion

based on the VESUS dataset. Our proposed VCGAN outper-

forms the baselines on two emotion pairs, namely, neutral to

angry and neutral to sad. The cycle-GAN comes a close sec-

ond ahead of the GMM and Bi-LSTM models. This shows that

generative models contain the needed flexibility for this task.

Note that GMM’s emotion saliency is close to or better than

Bi-LSTM, largely because we train a separate model for each

speaker. The poor saliency ratings for the Bi-LSTM likely re-

flect the difficulty of training recurrent architectures on small

datasets. VCGAN performs slightly worse than the cycle-GAN

for neutral to happy conversion due to the smaller number of

samples for training. For the other two emotion pairs, our hy-

brid generative approach outperforms the baselines by learning

the complex relationship between spectrum and F0 contour.

VCGAN does extremely well in retaining the quality of

speech after conversion which is evident from the mean opinion

scores (MOS) shown in Fig. 2. This is mainly because the pre-

diction of F0 contour is conditioned on spectrum, which allows

* * *

Figure 4: Comparison of F0 estimation by the proposed model

and the Cycle-GAN on VESUS parallel utterances. Marker ∗
above the bars denote p < 10−2 for a two sample t-test.

the generator to exploit the harmonicity present in the spectrum.

Bi-LSTM method has the best MOS among the baseline algo-

rithms because empirically it does not change the utterance but

merely copies the source features as output.

3.2.2. Wavenet Evaluation

To simulate an unseen speaker, we generate 100 neutral utter-

ances using Wavenet [2]. We then apply the models learned

on the VESUS dataset without any fine-tuning. We have omit-

ted the GMM, since it can only be trained on single speakers,

and we do not have access to “emotional” Wavenet utterances.

Fig. 3 illustrates the results of this experiment. As seen, the

Bi-LSTM does just as poorly on an unseen speaker as on the

VESUS dataset. Empirically, we observe that the Bi-LSTM

output resembles a distorted identity mapping. While the cycle-

GAN largely retains its performance, it achieves a lower emo-

tional saliency than our model in all cases. This is because the

smooth warping between source and target F0 automatically ad-

justs to the frequency range of a new speaker.

Both the cycle-GAN and VCGAN exhibit a decrease in

MOS for the Wavenet utterances. Here, the minimal conversion

allows the Bi-LSTM to produce more natural sounding speech

for neutral to angry conversion. Nonetheless, our method comes

in a close second. Taken together, we can conclude that there is

a trade-off between the emotion saliency and the speech quality.

VCGAN balances it better in comparison to the baselines.

3.2.3. Quantitative Comparison

The parallel utterances in VESUS allow us to objectively mea-

sure the difference between the converted and real F0 contours.

We compare our approach to the Cycle-GAN model which is

also a non-parallel technique. As seen in Fig. 4, our approach

has lower mean absolute error for all three emotion pairs. This

indicates that intonations might have a unique trend for each

emotion, which VCGAN can exploit better than cycle-GAN.

4. Conclusions

We proposed a novel approach to train a pair of GANs in a

cyclic schema by comparing their induced joint densities. The

GAN generators were composed of a trainable and a static com-

ponent. The trainable component generated a latent embedding

called momenta, which was then used by the fixed component to

warp the source F0 contour. Our model is both objectively and

subjectively superior to the existing state-of-the-art methods. It

achieves a good balance between the emotion saliency and re-

construction quality. The novel loss function used for training

the generators helps unfold the complex relationship between

spectrum and F0. Further, the deformation based modeling of

target F0 contour makes it robust for new unseen speakers.
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large deformation metric mappings via geodesic flows of diffeo-
morphisms,” International journal of computer vision, vol. 61, no.
139-157, 2005.

[19] S. C. Joshi and M. I. Miller, “Landmark matching via large defor-
mation diffeomorphisms,” IEEE transactions on image process-

ing, vol. 9, no. 8, pp. 1357–1370, 2000.

[20] H.-W. Hsieh and N. Charon, “Diffeomorphic registration of dis-
crete geometric distributions,” CoRR, vol. abs/1801.09778, 2018.

[21] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and
P. Abbeel, “Infogan: Interpretable representation learning by in-
formation maximizing generative adversarial nets,” in Proc. NIPS

2016, D. D. Lee, M. Sugiyama, U. von Luxburg, I. Guyon, and
R. Garnett, Eds., 2016, pp. 2172–2180.

[22] A. Srivastava, L. Valkov, C. Russell, M. U. Gutmann, and C. A.
Sutton, “VEEGAN: reducing mode collapse in gans using im-
plicit variational learning,” in Proc. NIPS, 2017, I. Guyon, U. von
Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vish-
wanathan, and R. Garnett, Eds., 2017, pp. 3308–3318.

[23] V. Dumoulin, I. Belghazi, B. Poole, A. Lamb, M. Arjovsky,
O. Mastropietro, and A. C. Courville, “Adversarially learned in-
ference,” CoRR, vol. abs/1606.00704, 2016.

[24] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” CoRR, vol. abs/1412.6980, 2015.

[25] T. Kaneko and H. Kameoka, “Parallel-data-free voice conver-
sion using cycle-consistent adversarial networks,” CoRR, vol.
abs/1711.11293, 2017.

[26] J. Kominek and A. W Black, “The cmu arctic speech databases,”
SSW5-2004, 01 2004.

3400


