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Abstract

In this work, we propose a GAN-based method to generate syn-

thetic data for speech emotion recognition. Specifically, we in-

vestigate the usage of GANs for capturing the data manifold

when the data is eyes-off, i.e., where we can train networks us-

ing the data but cannot copy it from the clients. We propose a

CNN-based GAN with spectral normalization on both the gen-

erator and discriminator, both of which are pre-trained on large

unlabeled speech corpora. We show that our method provides

better speech emotion recognition performance than a strong

baseline. Furthermore, we show that even after the data on the

client is lost, our model can generate similar data that can be

used for model bootstrapping in the future. Although we eval-

uated our method for speech emotion recognition, it can be ap-

plied to other tasks.

Index Terms: speech emotion recognition, generative adver-

sarial networks, data augmentation

1. Introduction

Data augmentation is an essential component of low-resource

tasks where collecting data is costly. These tasks usually rely on

a small set of training data that the neural networks are prone to

over-fit. For such low-resource tasks, data augmentation strate-

gies are useful for improving the generalization capabilities of

neural networks. One task that fits this scenario is speech emo-

tion recognition (SER) due to difficulty in annotating data.

In recent years, most of the industry has shifted its data col-

lection methods to privacy-focused settings. Federated learning

(FL) [1] allows the distributed training of neural networks on

eyes-off data that otherwise would be inaccessible due to pri-

vacy concerns. One shortcoming of traditional FL is that some

client data is only available for a short period of time. Then, all

this data is lost and cannot be used anymore for future training

cycles.

Neural network-based data augmentation methods try to

capture the data manifold, resulting in the generation of data

statistically similar to the source data [2, 3, 4, 5, 6, 7]. As such,

the augmentation networks (or generative networks) can be re-

purposed and used to model the eyes-off data. These genera-

tive networks, collected from the clients, can then synthesize

data that can be used for training even after the original data

is removed. Generative adversarial networks (GANs) [8] can

directly model the data manifold and have shown impressive

results for different data modalities. It is also shown that the

GANs do not merely copy the data and retrieve it during gener-

ation; they instead generate new samples that are similar to the

original samples.

In this work, we propose a GAN-based generative network

for the SER task. We analyze our proposed network in two

different training scenarios: 1) all data on a local machine (cen-

tralized) 2) each client contains a portion of the data (federated).

Then we train SER networks solely on the synthetic data and

compare the results. We also compare our network with an-

other GAN-based data augmentation network [7]. The results

suggest that our network provides better synthetic data than the

baseline, and these generative networks can be used for data

modeling for eyes-off data to bootstrap future models.

2. Related Work

Traditional systems utilize hand-crafted features usually com-

puted in a sliding-window fashion and aggregated with func-

tionals [9, 10, 6, 5]. There are fixed sets of hand-crafted fea-

tures that are widely used in the research community, such as

OpenSmile feature sets [11]. Some of these features include the

mel-frequency cepstral coefficients (MFCCs), fundamental fre-

quency (F0), spectral features such as energy, frequency, and

bandwidth of the formants. The functionals are used to obtain

a feature representation for the whole utterance and usually in-

clude the mean, std, min, max, and range. Sahu et al. [6] used

GANs to synthesize hand-crafted feature vectors for SER data

augmentation. They experimented with vanilla GAN and con-

ditional GAN [12]. Bao et al. [5] proposed to leverage the un-

labeled speech datasets for data augmentation by using Cycle-

GAN [13] to transfer emotion style of the feature vectors. Both

approaches showed promising results.

The hand-crafted features are more suitable for modeling

due to their lower dimensionality compared to spectrograms

or raw waveforms. However, generating examples of a hand-

crafted feature set restricts future use to compatible recognition

models. Generating spectrograms or raw waveforms provides

much more flexibility in future research by allowing us to train

models directly on the raw waveforms [14], multi-channel au-

dio [15] or on extracted features [16].

Chatziagapi et al. [7] proposed generating log-mel spectro-

grams with GANs to address data imbalance by augmenting the

minority class samples. First, they trained an autoencoder us-

ing reconstruction loss; then, they initialized their generator and

discriminator with the pre-trained decoder and encoder, respec-

tively. For conditioning, they estimated the mean and covari-

ance of the latent code for each class and used these statistics

to generate the multivariate noise to represent classes during the

GAN training. This method also showed promising results ad-

dressing the data imbalance.

In this work, we propose a similar system to [7] for generat-

ing spectrograms. Our method includes improvements such as

large-scale pre-training, spectral normalization, different scale

learning rate, gradient penalty, and nearest-neighbor interpola-

tion. These improvements lead to high generation quality. We

compare our method with the baseline method using SER clas-

sification performance as a metric.

3. Method

In this section, we provide more detail on the neural network

architecture, class-conditioning, pre-training, and fine-tuning.
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Figure 1: Training stages of the proposed method are shown. x is the real spectrograms, x̃ is the reconstructed spectrograms, x̂ is the

generated spectrograms, z is the noise input, c0 is a Nc-dimension vector of zeros as a placeholder for condition, and c is the one-hot

condition vector.

3.1. Model Architecture

We propose a deep convolutional GAN (DCGAN)-style [17]

architecture similar to the baseline model [7]. The baseline

work used transposed convolutional layers that cause the out-

put to have checkerboard artifacts, making it easily distinguish-

able from real samples. To alleviate this effect, we instead use

nearest-neighbor interpolation for upsampling. Another ma-

jor difference is that we do not use any batch-normalization or

dropout layers in either the generator or discriminator networks.

Furthermore, for more stable GAN training, we perform

spectral normalization for all layers in the generator and dis-

criminator [18, 19], and use a gradient-penalty when training

the discriminator [20]. Besides, we employ different learn-

ing rate scales for the discriminator and the generator [21, 19],

which allows for more efficient GAN training for regularized

discriminators. In the original WGAN-GP work [20], the dis-

criminator takes five steps for each generator step; instead, we

use a higher learning rate for the discriminator and let the gen-

erator and discriminator step at the same frequency.

For class-conditioning, we concatenate the one-hot emotion

labels to the noise input, as in [12]. This way, the generator

has explicit emotion information during generation. We set the

noise dimension to Nz , when we add the emotion conditions,

the input of the generator becomes a Nz + Nc-dimension vec-

tor, where Nc is the number of classes. The generator takes

this input and feeds it to two linear layers that are followed by

a leaky ReLU activation. The resulting intermediate represen-

tation is reshaped into eight by eight images. These images are

fed into nine convolutional layers, the first eight of which are

followed by leaky ReLU activations. The last layer uses a hy-

perbolic tangent activation to normalize the spectrogram output

to a range of [-1, 1]. After every second convolutional layer, we

use nearest-neighbor interpolation to upsample the images.

The discriminator is an eight-layer convolutional neural

network with leaky ReLU activations that operates on raw spec-

trograms. Every second convolutional layer’s stride is set to 2

for downsampling. After the convolutional layers, the interme-

diate representation is flattened and fed into two linear layers.

A leaky ReLU activation follows the first linear layer; a softmax

activation follows the last layer during fine-tuning, and there is

no activation during pre-training. For fine-tuning, the discrimi-

nator outputs Nc+1 neurons: Nc for the emotion classes and the

last for the fake class as in [2, 7]. This architecture allows the

generator to capture the data distribution of the minority classes

even when the dataset is imbalanced. We applied spectral nor-

malization to each layer in both networks. The architectures for

both networks are shown in Table 1.

Table 1: The details of the network architectures are shown.

Both networks include leaky ReLU activations after each layer

except for the last. Spectral normalization is applied to all lay-

ers. The filter size for the convolutional layers is set to 3.

Network Layer Input Shape Stride Output Shape

Generator

FC (Nz+Nc, ) - (4096, )

FC (4096, ) - (32768, )

Conv2D (512, 8, 8) 1 (512, 8, 8)

Conv2D (512, 8, 8) 2 (512, 16, 16)

Conv2D (512, 16, 16) 1 (256, 16, 16)

Conv2D (256, 16, 16) 2 (256, 32, 32)

Conv2D (256, 32, 32) 1 (128, 32, 32)

Conv2D (128, 32, 32) 2 (128, 64, 64)

Conv2D (128, 64, 64) 1 (64, 64, 64)

Conv2D (64, 64, 64) 2 (64, 128, 128)

Conv2D (64, 128, 128) 1 (1, 128, 128)

Discriminator

Conv2D (1, 128, 128) 1 (64, 128, 128)

Conv2D (64, 128, 128) 2 (64, 64, 64)

Conv2D (64, 64, 64) 1 (128, 64, 64)

Conv2D (128, 64, 64) 2 (128, 32, 32)

Conv2D (128, 32, 32) 1 (256, 32, 32)

Conv2D (256, 32, 32) 2 (256, 16, 16)

Conv2D (256, 16, 16) 1 (512, 16, 16)

Conv2D (512, 16, 16) 2 (512, 8, 8)

FC (32768, ) - (4096, )

FC (4096, ) - (Nc+1, )

3.2. Training Strategies

Training the neural networks on abundant unlabeled data be-

fore fine-tuning on the actual task (transfer learning) is shown

to be highly beneficial for NLP, image, and speech domains [22,

23, 24, 25]. Since labeled speech emotion data is minimal, we

employed pre-training to leverage the unlabeled data. Figure 1

shows the training overview of our system.

Pre-Training: Reconstruction Loss - First, we form an

autoencoder using our discriminator as an encoder and genera-

tor as a decoder, similar to [7]. We replace the last layer of the

encoder (discriminator) to output a Nz-dimension latent code.

For the remaining Nc-dimension input, we provide a vector of

zeros as a condition placeholder during the pre-training. Con-

sequently, the corresponding parameters for the emotion con-

ditions do not get activated during the pre-training. We solely

use L1 loss for autoencoder training. This initialization method

leads to a stable solution and avoids the mode collapse issue

usually encountered during GAN training. This step is dis-

tinctly different from the baseline model [7], where the authors

pre-trained the network on the same emotion data, which is

still prone to over-fitting. In contrast, we employ a large un-

labeled speech corpus with different recording conditions and

many speakers.

Pre-Training: WGAN-GP - After the autoencoder pre-
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Figure 2: Spectrogram examples are shown for real and fake samples. The first row shows the real spectrograms, and the second row

shows the generated spectrograms. The generated and real samples are hard to distinguish visually.

training, we initialize the weights of our discriminator and gen-

erator from the encoder and decoder respectively. In this case,

the discriminator outputs a single neuron, and it is tasked with

detecting if the sample is real or fake. Similar to autoencoder

pre-training, we provide the generator with an Nz-dimension

noise vector plus Nc-dimension zeros vector. Again, since the

data is unlabeled, we keep the parameters corresponding to the

condition inputs inactive. During WGAN-GP pre-training, we

enable the gradient penalty and different learning rate scales.

After the WGAN-GP pre-training, the resulting networks can

generate highly realistic log-mel spectrograms, indistinguish-

able from the real data. An example set of spectrograms is

shown in Figure 2. After these two steps of pre-training, the

networks can generalize well and is ready for fine-tuning.

Fine-Tuning - We load the pre-trained weights from the

previous step and replace the last layer of the discriminator to

output Nc+1 neurons, as shown in Table 1. In this step, we

provide the one-hot emotion labels to the generator. Since the

generator can already generate high-quality spectrograms, now

it focuses on capturing the underlaying emotion structure to fool

the discriminator. For optimizing the discriminator, we use the

sparse categorical cross-entropy loss.

Another advantage over the baseline method is that, using

conditional GANs, we can create paired speech emotion data

that might be useful for paired style transfer networks by using

the same noise input and different emotion conditions. Figure 3

shows the samples generated from the same noise input and dif-

ferent emotion conditions.

4. Experiments

In this section, we provide the dataset information, implementa-

tion details, the experiment scenarios, and the qualitative evalu-

ation results.

4.1. Datasets

In our experiments, we employed two datasets: interactive emo-

tional dyadic motion capture database (IEMOCAP) [26] for la-

beled speech emotion data, and LibriSpeech [27] for unlabeled

speech data.

IEMOCAP is a well-established multi-modal dataset in

SER literature. It contains 12 hours of emotion data from 10

speakers (5 females and 5 males). The recordings are provided

in 5 sessions; for each session, there are two speakers. The

recordings are provided at a 16 kHz sampling rate. The dataset

Neutral Angry Sad Happy

Figure 3: Paired spectrogram examples are shown for the condi-

tional generation. Each row shows the samples generated from

the same noise vector, and each column shows a different emo-

tion condition. From left to right, columns show the neutral,

angry, sad, and happy emotions, respectively.

contains 12 emotions; however, we followed the other works

in literature and select only four emotions: neutral, angry, sad,

and happy. Note that we also merged the excited category with

happy category, following previous works in the field. The total

speech emotion data that we used for these four categories is

around 7 hours.

For pre-training, we adopted 360 hours of speech data from

the LibriSpeech Corpus [27], a widely used dataset for auto-

matic speech recognition (ASR) research. LibriSpeech con-

tains 2500 speakers in total, each of whom narrates book pas-

sages. The recordings are provided at a 16 kHz sampling rate.

LibriSpeech allows our model to learn from a wide variety of

speakers and speech styles, improving the generation quality

and generalization capability of our networks beyond that which

is possible using only the limited labeled speech emotion data.
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4.2. Pre-processing

We extracted the spectrograms of the speech signals using a 32

ms window size, 16 ms hop size (50%), and 512 FFT bins.

The number of mel coefficients is set to 128, and we created

128 by 128 spectrogram patches (around 2 seconds) for train-

ing. To stabilize the training, we normalized the spectrograms

within the [-1, 1] value range by calculating the minimum and

maximum values of the combined Librispeech and IEMOCAP

datasets.

4.3. SER Network

For an objective evaluation, we employed a neural network for

SER and compared its classification performance when trained

on the real data with that when trained on synthetic data. The

network architecture is identical to our discriminator/encoder

architecture, except for the last layer. We replaced the last layer

with a linear layer that outputs Nc outputs rather than Nc+1.

For all experiments listed in this section, we trained this net-

work from scratch using the specified data. Since our focus is

on data generation rather than improving the classification per-

formance, we selected this simple SER architecture for all our

experiments. During testing, for each file, we employed a slid-

ing window with a hop size of 32 frames. The emotion proba-

bilities for each window were aggregated using the mean.

4.4. Implementation Details

All networks were implemented using the PyTorch frame-

work [28]. We used the Adam optimizer for training all net-

works, setting β1=0.5 and β2=0.99. The learning rate during

autoencoder pre-training was set to 5e-5. Throughout GAN

training (both pre-training and fine-tuning), the learning rates

of the generator and discriminator were set to 2e-6 and 2e-5,

respectively. The learning rate for the SER network was set to

1e-5 and decayed by an order of 10 for every 10k iterations.

The coefficient for the gradient penalty was set to 10, the mini-

batch size was 32 samples, and the noise dimension, Nz , was

128. The number of emotions, Nc, was 4. We optimized the

networks for 200K iterations during the autoencoder and GAN

pre-training.

For all experiments listed in this section, we employed

leave-one-session-out cross-validation, which is a common

practice for small datasets such as IEMOCAP. We trained the

data augmentation models using four sessions, generated the

synthetic data, trained the SER network with the synthetic data

and evaluated the performance on the remaining session. We

repeated this for all sessions and reported the average results of

five sessions. We used 5-fold cross-validation for the original

IEMOCAP experiments as well.

4.5. Scenarios and Results

We consider two scenarios: 1) a server possessing all data (cen-

tralized), and 2) each client containing a subset of the data. The

first scenario evaluates if the synthesized data can capture the

data statistics and if it is useful for the classification task. It is

equivalent to data augmentation experiments, so we can directly

compare our proposed method with the baseline. The second

scenario evaluates if we can model the data on different clients

and pool the synthesized data of different clients in a way that

benefits the classification task. In this way, the server will take

the eyes off raw data stored in each client to ensure privacy.

Centralized Training- In this scenario, the data from the

four sessions were used to fine-tune the GAN. Then, we gener-

Table 2: The classification results for the original and synthetic

data. We show the mean and std F1-scores of 5-fold cross-

validation.

Data F1-Score Mean F1-Score Std

IEMOCAP 57.27 0.99

Baseline [7] 43.05 2.97

Proposed - Centralized 48.54 3.89

Proposed - Federated 50.39 3.31

ated 40K samples for each emotion category, trained the SER

network, and evaluated on the remaining session. We did not

observe further improvements by adding more synthetic data

samples. The results are shown in Table 2, denoted as Pro-

posed - Centralized. Compared to the original IEMOCAP re-

sults, some performance loss is expected for the synthetic data,

as shown in [5]. While training on the original data yields a

57.27% mean F1-score, our synthetic data yields 48.54%. Our

proposed method provides improved classification performance

compared to the baseline method.

Federated Training- In this scenario, each client contained

the data from a single session. We sent a pre-trained copy of

our proposed GAN to each client and fine-tuned them on each

client’s respective emotion data. Then we collected these mod-

els and generated 10K samples for each emotion from each

client’s model. Again, we employed 5-fold cross-validation:

we pooled data from four sessions and trained the SER network

and evaluated on the remaining session. Therefore, the total

number of samples generated per emotion was equal to central-

ized training (40K). We repeated this for each session and aver-

aged the results, which is shown in Table 2. The results suggest

that modeling each session with a different GAN yields a 3.8%

relative classification improvement compared to the centralized

training.

Discussion- The results suggest that the eyes-off data can

be modeled with some expected information loss and can be

used in the future for bootstrapping new models. In the feder-

ated setting, each client modeled the emotion data of two speak-

ers as opposed to modeling the emotion data of eight speakers.

We argue that, due to having more parameters per speaker, the

federated setting yielded more personalized spectrograms that

capture the variations of emotions for those speakers. There-

fore, it yielded slightly better results than the centralized train-

ing. Readers should note that although we call this a feder-

ated setting, it should not be confused with traditional federated

learning since we do not aggregate model parameters from dif-

ferent clients.

5. Conclusions

In this work, we proposed a GAN that can generate speech

emotion spectrograms, which can be used for training SER net-

works. We showed that our method provides better generation

quality compared to the baseline method, and showed that the

pure synthetic data could yield decent results for eyes-off data.

We proposed to use the GANs for modeling imbalanced and

highly skewed data among clients for future use, even after the

original data is removed. Our future work includes modeling

the raw waveforms for more flexibility in future data use.
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