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Abstract

In this paper we introduce StoRIR - a stochastic room impulse

response generation method dedicated to audio data augmenta-

tion in machine learning applications. This technique, in con-

trary to geometrical methods like image-source or ray tracing,

does not require prior definition of room geometry, absorption

coefficients or microphone and source placement and is de-

pendent solely on the acoustic parameters of the room. The

method is intuitive, easy to implement and allows to generate

RIRs of very complicated enclosures. We show that StoRIR,

when used for audio data augmentation in a speech enhance-

ment task, allows deep learning models to achieve better results

on a wide range of metrics than when using the conventional

image-source method, effectively improving many of them by

more than 5 %. We publish a Python implementation of StoRIR

online 1.

Index Terms: room impulse response, data augmentation,

speech enhancement, deep learning

1. Introduction

Deep learning tasks, like speech enhancement or acoustic event

classification and localization, can significantly benefit from

augmenting training datasets with room impulse responses

(RIR) [1, 2, 3]. RIRs are a set of functions that describe the

influence of a given acoustic environment when a sound wave

propagates from a source to a receiver. Dataset augmentation

with RIRs often leads to better generalization in real-life sce-

narios, where the acoustic environment has a large impact on

the recorded audio signal. However, capturing real-life impulse

responses requires a lot of time and resources and the openly

available databases containing recorded RIRs can be insuffi-

cient for proper data augmentation. To address that issue, re-

searchers have used computational methods that simulate RIRs

with a lot of success [4, 5].

2. Background and related work

There are several methods to calculate a RIR. The approach that

is able to provide the most accurate results is based on numer-

ically solving the wave equation (e.g. finite element method,

boundary element method). However, these techniques are

computationally very expensive and require a detailed mesh of

the acoustic environment. Faster, but less accurate techniques

are those based on the assumptions of geometrical acoustics

(e.g. ray tracing , image-source) [6]. In geometrical acous-

tics, sound is assumed to propagate as rays, and all of its wave

properties are neglected. This assumption is valid at high fre-

quencies, where the wavelength of sound is short compared to

surface dimensions and the overall dimensions of the space, but

1https://github.com/SRPOL-AUI/storir

at low frequencies the approximation errors increase as wave

phenomena play a larger role [6]. It is important to note, that for

audio data augmentation in machine learning applications, the

method of choice while simulating RIRs is almost exclusively

image-source. We can attribute its popularity in this field to low

computation complexity, that allows for online generation dur-

ing training, and availability of open source software designed

to model room acoustics using this method [7, 8]

Accuracy similar to that achieved by employing numerical

methods in acoustics can be achievable in a much simpler way.

Statistical Room Acoustics (SRA), under certain assumptions,

can provide a statistical description of a RIR between a source

and a receiver. Sabine [9] presented the earliest attempt at room

statistical methods. He introduced, in the late 19th century, a

method for reverberation time calculation of a space without

considering the details of its geometry. More than 50 years

later, Schroeder [10] extended Sabine’s fundamental work and

derived a set of statistical properties describing the frequency

spectrum of a random impulse response. Moorer et al. [11]

noted, that impulse responses in the finest concert halls around

the world sounded remarkably similar to white noise with an

exponential amplitude envelope. To test this observation, they

generated synthetic impulse responses by shaping unit-variance

Gaussian pseudo-random sequences with an exponential of the

desired length. The direct sound was added by including an

impulse at the beginning. Later, Polack [12] developed a time-

domain model excluding the contribution of the direct path and

describing a RIR as a realization of a non-stationary stochastic

process.

In this paper, we present a method of calculating RIRs

based on SRA dedicated to machine learning data augmenta-

tion. To the knowledge of the authors this is the first applica-

tion of SRA to machine learning tasks. The presented method is

particularly useful for data augmentation, because it does not re-

quire defining room geometry and acoustic properties of walls,

furniture, etc. which is necessary in other methods. Arguably,

the fact that we do not define room geometry is a drawback

for other purposes like auralization where the RIR of a specific

room is needed. However, the purpose of data augmentation is

to help machine learning models to generalize, so that they work

in diverse acoustic environments. Therefore, using StoRIR, we

generate RIRs based on several acoustic parameters that corre-

spond to a class of rooms, without explicitly defining geometry

or absorption coefficients.

3. Proposed method

3.1. Room Acoustic Parameters

There exist multiple parameters that describe acoustic proper-

ties of a room [13]. For the purpose of implementing StoRIR

we use the following:
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Figure 1: Four steps of stochastic RIR generation. Noise generation - (a). Energy decay curve shaping - (b). Conversion from

logarithmic to linear scale - (c). Adjusting energy distribution within the RIR - (d).

• Reverberation time (RT60) - a well-known, and proba-

bly the most common, parameter describing the acoustic

behaviour of an acoustic cavity. RT60 quantifies the time

it takes for the sound to decay by 60 dB after the sound

source is removed. This term was introduced in Sabine’s

pioneering research, in which he noticed that reverber-

ation time was proportional to the volume of the room

and inversely proportional to the amount of absorption.

Because the absorptive properties of materials vary as a

function of frequency, the reverberation time is also fre-

quency dependent,

• Early Decay Time (EDT) - a very similar parameter to

RT60. The difference relies in the amount of energy de-

cay. EDT denotes how quickly sound energy drops by 10

dB, not 60 dB like in RT60. This is due to the fact that

early reflections may decay with a different rate than the

late part of the RIR,

• Direct to Reverberant Ratio (DRR) - describes the en-

ergy ratio of the direct sound to the reverberant part of a

signal,

• Initial Time Delay Gap (ITDG) - specifies the time be-

tween the arrival of the direct sound and the first reflec-

tion to the receiver.

3.2. Stochastic impulse response generation

The result of a geometric RIR generation method is an energetic

impulse response (also called a reflectogram). We aim to simu-

late a similar outcome, but without providing the algorithm with

room geometry, absorption coefficients and microphone/source

placement. Hence, the method will not model a specific room

but rather the impulse response itself. Normally, room acoustic

parameters are obtained from a RIR. In our approach we reverse

this property and generate the RIR from scratch by shaping it

based on the acoustic parameter values. For the input to our al-

gorithm we choose to consider RT60, EDT, DRR and ITDG de-

scribed in detail in section 3.1. We argue, that using these para-

maters can be more intuitive when generating a large amount of

RIRs that should not necessarily correspond to a specific room

geometry. This is often the case when augmenting data for ma-

chine learning purposes where we want models to generalize in

a diverse range of acoustic environments.

The proposed stochastic RIR generation algorithm can be

split into four steps: noise generation, energy decay curve shap-

ing, conversion from logarithmic to linear scale and adjusting

the energy distribution within the RIR (Figure 1).

3.2.1. Noise generation

We start constructing the RIR with generating an uniformly dis-

tributed noise vector v of length l equal to the RT60 parameter

in samples. Both EDT and RT60 parameters describe the sound

energy decay in decibels so, for convenience, we use the loga-

rithmic scale in the beginning of RIR generation. Due to that,

the range of the v’s uniform distribution will become the de-

viation range of reflection energies (in dB) in the resulting en-

ergetic impulse response. This range can be arbitrarily chosen

or sampled from a distribution adding to the randomness of the

generated RIR. We assume that the mean value of v is 0 [dB].

3.2.2. Energy decay curve shaping

In order to obtain a simulated energy decay curve (EDC), we

introduce a negative slope to v so that its mean value drops by

10 dB in time specified by the EDT parameter using

∀i ∈ 1, 2...k : EDCi = vi −
10i

k
(1)

where k is the EDT parameter value in samples.

After that, we concatenate the remainder of v (decreased in

level by 10 dB) with the EDC vector and decrease it gradually

by further 50 dB so that the overall level of EDC drops by 60

dB in time specified by the RT60 parameter. We do it using the

following equation:
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∀i ∈ k + 1, k + 2, ..., l :

EDCi = vi −

[

10 +
50(i− k)

l

]

(2)

3.2.3. Conversion from logarithmic to linear scale

The third step is converting EDC to linear scale using

EDC
lin = 10

EDC

10 . (3)

After that, we normalize the resulting signal to its peak

value. EDClin can be interpreted as a maximally dense en-

ergetic impulse response, meaning energy is detected in every

time slot (sample). We will refer to these energy peaks as re-

flections or rays.

3.2.4. Adjusting energy distribution

In order to account for the fact that, in real life, sound reflections

reach the receiver with time gaps in between them, we make the

obtained energetic impulse response EDClin more sparse. We

simulate delays between reflections by first eliminating a chunk

of reflections of length equal to the ITDG parameter in samples

after the initial sound ray. Then, we iteratively delete rays at

random locations from the remaining part of EDClin until we

reach a desired DRR, hence the stochastic nature of the gener-

ated RIR. Analysis of sound propagation in enclosures shows,

that in the early part of the RIR reflections are less densely dis-

tributed than in the reverberation tail [13], therefore we assign a

higher probability of deleting rays from the early reflection part

of the RIR (EDClin) than from it’s remainder.

A RIR generated in this manner does not represent any ex-

isting or modeled room but rather some imaginary room with

desired acoustic parameters. Due to the randomness introduced

in generating the energy decay curve from random noise, and

the process of adjusting the energy ratios, the resulting RIR will

differ with every generation even if we do not change the val-

ues of parameters it is based on. The more variability we allow

in the acoustic parameters, the more the generated impulse re-

sponses will differ from each other. We can e.g. make a whole

set of impulse responses where RT60 = 1 s, but with other pa-

rameter values sampled from chosen ranges, therefore creating

an augmentation dataset of RIRs representing a class of virtual

rooms with 1 second reverberation time.

3.3. Other representations of the stochastic impulse re-

sponse

After executing all of the steps described above, we obtain

an energetic impulse response that can be directly convolved

with an arbitrary audio signal resulting in a reverberation effect.

However, the reverberation time of the space represented by this

RIR is equal across the whole frequency spectrum which, most

of the time, is not the case with real impulse responses due to

stronger air and surface attenuation of sound in higher frequen-

cies [13]. To account for that, the RIR can be generated sep-

arately for each 1/1 or 1/3 octave band with decreasing rever-

beration time. Another modification can be to generate the RIR

with lower time resolution (e.g. 5 ms) and then adapt it to the

sampling frequency using the Poisson-distributed noise method

described in [14] (however, it should be noted that this method

requires an estimation of the room volume). In our experiments

we decided to use the most basic version of the energetic im-

pulse response without any of the above described modifica-

tions, as we have experimentally established that it produces

the best results in our evaluation task.

4. Experimental evaluation

4.1. Model description

Although our method can be employed in virtually any task that

can benefit from RIR augmentation, we decided to evaluate it

on a speech enhancement task. A large amount of research has

been conducted in the field of noise suppression in anechoic

conditions [15, 16, 17, 18]. However, these experimental sce-

narios are not applicable to real-life use cases, as the acoustic

characteristics of the space where the sound sources are placed

cause a significant difference to the spectral structure of result-

ing audio signals. In order to account for this difference, it is

common to convolve noisy audio with various RIRs so that the

model can suppress noise and reverberation at once. To evaluate

the proposed augmentation method we use one deep learning

model designed for denoising [16], and one designed for dere-

verberation [19] which we call DenoiseNet and DereverbNet.

Both are based on the U-Net [20] architecture with DenoiseNet

using complex-valued operations, and DereverbNet employing

DenseNet-like blocks [21] and two LSTM layers in the bottle-

neck. Both models are used for the exact same task of simulta-

neous speech denoising and dereverberation.

4.2. Dataset

4.2.1. Training

For all experiments, we use the clean and noisy parallel speech

database by Valentini et al. [22] which consists of around 400

utterances from each of 14 male and 14 female speakers. The

authors obtained the training dataset by mixing speech files

from the Voice Bank corpus [23] with 10 different types of

noise (2 artificial, and 8 from the DEMAND database [24]) at

four different SNRs (15 dB, 10 dB, 5 dB and 0 dB). To eval-

uate the performance of our RIR generation method, we com-

pare it with the image-source method. We generate 50,000 im-

pulse responses with the image method using Pyroomacoustics

[8], an open source Python package for room acoustics simula-

tion. The details of simulated room geometries and placement

of sound sources and microphones are the same as described in

[19]. The one difference is, we change the desired reverberation

time range to 0.2 s - 0.7 s (it has to be converted to absorption

coefficients using the Sabine’s formula for the purpose of using

the image-source method). For comparison, we also generate

50,000 equivalent RIRs with the proposed method setting the

RT60 range to 0.2 s - 0.7 s, the EDT range to 50 ms - 100 ms,

the ITDG range to 3 ms - 10 ms and the DRR range to -7 dB

- 0 dB. During training the generated RIRs are randomly con-

volved with noisy speech utterances to obtain noisy and rever-

berant signals. It is important to note, that during training, only

simulated RIRs were used without adding any real-life recorded

ones.

4.2.2. Testing

The performance of each model is evaluated on two test sets.

The first one (Testset 1) is an unchanged version of the noisy

and reverberant test set proposed by Valentini [25]. Because of

the fact that this dataset covers only 3 room configurations (two

of which are recorded in a somewhat artificial setting using a

room with configurable reverberation time), we create a sec-

ond test set (Testset 2) utilizing the same underlying clean and
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Table 1: Results on Testset 1 (higher is better, bold text indicates best score per model within a given metric)

Model Aug. method CSIG CBAK COVL fwSegSNR STOI PESQ

Noisy reverberant speech - 3.00 1.80 2.25 7.1 0.62 1.91

DenoiseNet

No augmentation 2.87 1.87 2.20 7.1 0.63 2.09

Image-Source 3.63 2.07 2.73 9.2 0.67 2.40

StoRIR 3.66 2.08 2.75 9.3 0.69 2.41

DereverbNet

No augmentation 3.69 2.26 2.98 10.2 0.64 2.07

Image-Source 3.97 2.45 3.26 11.3 0.76 2.34

StoRIR 3.95 2.35 3.20 11.2 0.70 2.45

Table 2: Results on Testset 2 (higher is better, bold text indicates best score per model within a given metric)

Model Aug. method CSIG CBAK COVL fwSegSNR STOI PESQ

Noisy reverberant speech - 3.25 1.87 2.44 8.1 0.77 2.01

DenoiseNet

No augmentation 3.17 1.96 2.42 7.9 0.74 2.08

Image-Source 3.87 2.08 2.89 9.9 0.83 2.53

StoRIR 4.02 2.23 3.05 10.6 0.84 2.59

DereverbNet

No augmentation 3.69 2.29 2.98 10.0 0.77 2.03

Image-Source 4.20 2.46 3.40 11.7 0.81 2.55

StoRIR 4.34 2.51 3.60 12.6 0.86 2.62

noisy files, but convolved randomly with 12 RIRs from 6 differ-

ent rooms (two offices, two meeting rooms, a lecture room and

a building lobby) in order to further evaluate generalization in

real-life settings and more complex room geometries. The RIRs

used in Testset 2 are obtained from the ACE challenge corpus

[26] and their reverberation time ranges from 0.3 s to 0.75 s. All

RIRs in both test sets are real-life recordings.

4.3. Data preprocessing

The original audio signals were first downsampled from 48kHz

to 16 kHz (which is a common practice in speech enhancement

tasks) and then, for the final model input, complex-valued spec-

trograms were obtained from raw waveforms. The STFT was

computed with a 64 ms window and a 16 ms hop size for De-

noiseNet, and a 32 ms window and 8 ms hop size for Dereverb-

Net as stated in the original papers. The training target for all

experiments was clean anechoic speech.

4.4. Evaluation metrics

To evaluate the performance of the speech enhancement mod-

els, and hence the viability of data augmentation using the pro-

posed method, we choose six objective speech quality and in-

telligibility metrics: CSIG - mean opinion score (MOS) predic-

tor of signal distortion, CBAK - MOS predictor of background-

noise intrusiveness, COVL - MOS predictor of overall signal

quality, fwSegSNR - frequency-weighted segmental signal to

noise ratio, STOI - short time objective intelligibility and PESQ

- perceptual evaluation of speech quality. For calculating met-

rics we used code repositories available online 2 3 4.

2https://github.com/IMLHF/Speech-Enhancement-Measures
3https://github.com/mpariente/pystoi
4https://github.com/vBaiCai/python-pesq

5. Results and discussion

Tables 1 and 2 summarize the metric scores on both test sets. It

is worth to mention the substantial boost of performance caused

by both RIR augmentation techniques when comparing with no

augmentation. In some cases, models trained with no augmen-

tation achieve even worse scores than the original noisy and re-

verberant mixture. Both RIR generation methods lead to im-

proved speech quality metrics, however, when comparing the

two, using StoRIR produces better results in more cases overall.

The scores are improved on Testset 2 across all metrics, which

we see resulting from better representation of unconventional

room geometries (like building lobby) by our RIR generation

method. The 0.9 dB improvement in fwSegSNR on Dereverb-

Net seems to be the most impressive result on this testset. More

comparable results on Testset 1 may result from the fact that

two out of three RIRs used in this test set are recorded in a con-

figurable reverberation room with a perfect ShoeBox geometry,

identical to the ones modeled with the image-source method.

Still, even though the image-source method has a somewhat un-

fair advantage in this test scenario, StoRIR manages to provide

similar or better results (especially on DereverbNet where the

PESQ improvement reached 0.11). The presented results also

show that the performance of our method is model agnostic.

6. Conclusions

In this paper we proposed StoRIR, a method for room im-

pulse response generation that does not require any informa-

tion about room geometry, absorption coefficients or micro-

phone and sound source placement. We show that when used

for data augmentation, our method substantially improves the

performance of deep learning models employed for a speech en-

hancement task in reverberant conditions. When compared with

the image-source method for RIR generation, StoRIR achieves

superior results when dealing with real reverberation in a wide

range of acoustic environments.
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