
A Differentiable Perceptual Audio Metric
Learned from Just Noticeable Differences

1Princeton University, USA
2Adobe Research, USA

{pmanocha,af}@cs.princeton.edu, {rizhang,nibryan,gmysore,zejin}@adobe.com

Abstract
Many audio processing tasks require perceptual assessment.
The “gold standard” of obtaining human judgments is time-
consuming, expensive, and cannot be used as an optimization
criterion. On the other hand, automated metrics are efficient
to compute but often correlate poorly with human judgment,
particularly for audio differences at the threshold of human de-
tection. In this work, we construct a metric by fitting a deep
neural network to a new large dataset of crowdsourced human
judgments. Subjects are prompted to answer a straightforward,
objective question: are two recordings identical or not? These
pairs are algorithmically generated under a variety of perturba-
tions, including noise, reverb, and compression artifacts; the
perturbation space is probed with the goal of efficiently identi-
fying the just-noticeable difference (JND) level of the subject.
We show that the resulting learned metric is well-calibrated with
human judgments, outperforming baseline methods. Since it is a
deep network, the metric is differentiable, making it suitable as a
loss function for other tasks. Thus, simply replacing an existing
loss (e.g., deep feature loss) with our metric yields significant
improvement in a denoising network, as measured by subjective
pairwise comparison.

1. Introduction
Humans have an innate ability to analyze and compare sounds.
While efforts have been made to emulate human judgment
via automatic methods, the gap between human and machine
judgment remains large [fig 1]. This gap is acute in the context of
synthetic audio based on deep learning [1], which has become so
realistic that most metrics fail to reflect human perception. Many
deep learning models rely on a metric for their loss functions;
and misalignment between the loss and human judgment yields
audible artifacts. Thus, the need for a perceptually-consistent
metric hinders advancement of audio processing.

Based on human assessment studies, researchers have
developed metrics that evaluate sound quality relative to a
reference recording, e.g. PESQ [2], POLQA [3] and VISQOL [4].
However, these methods suffer from two general drawbacks.
First, these models have acknowledged shortcomings such
as sensitivity to perceptually invariant transformations [5, 6],
which hinders stability in more diverse tasks such as speech
enhancement. Second, these metrics are non-differentiable, and
thus cannot be directly leveraged as a training objective within
the context of deep learning.

Addressing the latter concern, researchers have trained
differentiable neural networks that incorporate such perceptual
models, for example estimating PESQ at each training iteration [7,
8]. The approach of Zhang et al. [7] encumbers training with
expensive gradient estimation at each step, whereas that of
Fu et al. [8] fails to model unseen perturbations.

An alternative is to learn a loss function via adversarial

Audio1 closer to Ref.
according to humans,
deep embeddings, and
our model.

Reference
speech recording.

Audio2 closer to Ref.
according to L1, L2,
PESQ & VISQOL.

Figure 1: Audio1 contains white noise, whereas Audio2 is band-
limited: which one sounds “closer” to the reference recording?
Existing objective metrics (e.g., L1, L2, PESQ and ViSQOL)
struggle to measure JNDs, and often disagree with human
judgments, unlike deep embeddings and our model.

learning (GANs), which has shown promising results in enhance-

ment [9], synthesis [10], and source separation [11]. Another
approach adapts the deep feature loss [12] notion from the com-
puter vision community, by using representations learned from a
different task to construct similarity metrics [13]. This idea has
been adopted for various audio tasks [14, 15]. However, these
methods are problem-specific [16, 17] and require human assess-
ment for accurate evaluation, particularly when small perceptual
differences need to be measured.

We propose a new perceptual audio metric based on just-
noticeable differences (JNDs) – the minimal change at which
a difference is perceived. To do so, we first collect a large
scale dataset of human judgments wherein subjects are asked
an easy question: whether two audio recordings sound the
same or different. Recordings are modified by injecting various
perturbations characteristic of degradations commonly found
in audio processing tasks, including noise, reverb, equalization
distortion, and compression. The data collection process relies
on active learning to efficiently sample such artifacts near the
JND level. Next, we train a neural network with this data, and
use the learned representation to construct a distance metric that
measures the difference between two audio signals. We validate
the new metric by showing that it correlates well with three
diverse existing mean opinion score (MOS) datasets, as well as
three two-alternative forced choice test (2AFC) datasets. Finally
we show that using the new metric as a loss function improves
the performance of a state of the art denoising network.

Thus, our contributions are as follows: (1) a framework
for collecting crowdsourced human JND judgments for audio
recordings; (2) a differentiable perceptual loss model trained on
these data; (3) experiments showing that this model correlates
better with MOS tests than standard metrics; (4) demonstrable
improvement in a state-of-the-art speech enhancement network
wherein the loss function is enhanced by our model; and (5) the
dataset, code and resulting metric, as well as listening test
examples – are all available from our project page:
http://pixl.cs.princeton.edu/pubs/Manocha 2020 ADP
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2. Proposed Framework
We collect a dataset of human judgments using crowdsourcing
tools, which have been shown to perform similarly to expert,
in-lab tests [18, 19]; and then we fit a model to these data.

2.1. Data collection via active learning

We present a listener with two recordings, a reference xref

and perturbed signal xper, and ask if these two recordings
are exactly same or different, and record the binary response
h ∈ {0, 1}. For the reference recording xref, we first sample
a speech recording from a large collection and then degrade
it by randomly applying a set of perturbations (e.g. noise
and reverb). To produce the perturbed recording xper, we
select a perturbation direction, or “axis” which can be one of
several perturbation types or a combination applied sequentially.
Figure 2 shows an example where the perturbation direction is
a combination of two perturbation types. The types we study
are further described in Section 3.1. The perturbed recording
xper is produced as a function H of strength ρ ∈ [0, 100],
xper = H(xref, ρ). For example, if the perturbation is to add
noise, then H(xref, ρ) = xref + ρε where ε is normalised white
noise sampled from N (0, 1e−4)

For values of ρ that are too large or small, the answer is
“obviously” different or the same, respectively, and a downstream
metric is unlikely to gain information from such data. As
such, we employ an active learning strategy to efficiently gather
labelled data, in contrast to past approaches [20]. Our goal is
to identify the just noticeable difference (JND) threshold, ρjnd,
such that a subject can just hear the difference between xref

and xper. We attempt to sample ρ to be close to the JND point,
illustrated at a high-level in Figure 2.

We estimate the current subject’s most likely JND ρ∗jnd,
based on all past answers, and then produce the next test case by
xper = H(xref, ρ

∗
jnd). We assume that human answers follow a

Gaussian distribution with mean μ at the JND point and variance
σ2, representing human error. Following this, we compute the
likelihood of N past answers using L(μ, σ2) =

∏N
j=1(1 −

hj)(1−c(ρj |μ, σ2))+hjc(ρj |μ, σ2), where ρ1, ..., ρN are past
perturbation strengths, h1, ..., hN are the human judgments, and
c(vj |μ, σ2) is the CDF of Gaussian N (μ, σ2). After computing
μ and σ to maximize the above likelihood function, the next
test case follows from ρ∗jnd = μ. The ultimate product of our
data collection is a database of triplets {xref, xper, h}, which we
leverage for training a perceptual metric.

2.2. Training a perceptual metric

A high quality perceptual distance metric D would provide a
small distance D(xref, xper) if human judges feel they are the
same recording, and a larger distance if they are judged to be
different. Here, we explore four separate strategies to learn such
a metric. We then investigate how well each method correlates
with human judgments. All models have the same architecture
for comparison, described in Section 3.3.

Using a pre-trained network. “Off-the-shelf” deep network
embeddings have been used as a metric for training and have
been shown to correlate well with human perceptual judgments
in the vision setting [13], even without being explicitly trained
on perceptual human judgments. We first investigate if similar
trends hold in the audio setting. We describe the activation
of layer l of an L-layer deep network embedding as Fl(x) ∈
RTl×Cl , where Tl and Cl are the time resolution and number

Figure 2: Depiction of active learning for data collection. From
each reference, we probe along a random vector of combined
perturbations (dashed line) to search for the JND. Sequential
listener responses (numbered) indicate recordings sound the
same as (hollow dots) – or different from (solid) – the reference.

of channels of the layer, respectively. The distance between two
audio recordings can be defined by averaging between the full
feature activation stack:

D(xref, xper) =
∑

l

1

TlCl
||Fl(xref)− Fl(xper)||1

We train a model (pre) on two general audio classification
tasks from DCASE 2016 [21], namely accoustic scene classifi-
cation (ASC) and domestic audio tagging (DAT), following the
strategy in [14].

Training a model on perceptual data. We add linear weights
over the above model F as:

D(xref, xper) =
∑

l

1

TlCl
||wl � (Fl(xref)− Fl(xper))||1

where wl ∈ RC
l and � is the Hadamard product over channels.

The linear weights effectively decide which channels are more
or less “perceptual”. We present three variants. First, we keep
the weights of all the layers F fixed and only train the linear
layers. This presents a “linear calibration” of an off-the-shelf
network, denoted as lin. Second, we initialize from a pre-trained
classification model (pre), and allow all the weights for network
(F and linear layer) to be fine-tuned, denoted as fin. Third, we
train both the network F and the linear layer from scratch.

Training objective. Our network F has a small classification
network G at the end, which maps this distance D(xref, xper) to

a predicted human judgment ĥ. We minimize the binary cross-
entropy (BCE) between this predicted value and ground truth
human judgment h:

L(G,D) = BCE(G(D(xref, xper)), h)

Table 1: All examined perturbations and configurations.

Category Perturbations Intervals/Range
Applause Noise

Pink Noise

Water Drop Noise

White Noise

Additive [22]

Room Noise

2 dB to 66 dB SNR

Direct to Reverberation Ratio (DRR) -27 dB to 65 dB
Reverb [23]

Reverberation Time (RT60) 0.05 sec to 8 sec

MP3 (bitrate) 8 Kb/sec to 320 Kb/sec
Compression

μ law compression (re-quantization) 1 bit to 60 bits

Equalization Frequency bands (cut/boost bands) 0 to 1

Pops (% audio samples) 0.01 % to 10 %

Griffin-lim (iterations) 1 to 500Miscellaneous

Dropouts (% audio samples) 0.01 % to 20 %
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3. Experimental Setup
3.1. Perturbation Space

We apply the proposed framework to the broad field of speech
telecommunication, wherein noises like packet losses, jitter,
variable delay and other channel noise artifacts like sidetones
are common. Table 1 lists the perturbations and their ranges we
examined in our experiment. For each listening test set, we select
at most one instance from each category and sample a random
order to apply these categories, e.g. white noise energy from
additive, DRR from reverb, MP3 bit rate from compression,
equalization (EQ) and pops as the five perturbation values
(v1, v2, v3, v4, v5). We permute the order to simulate different
scenarios. For example, (reverb, additive, EQ, compression,
pops) simulates telecommunication while (compression, EQ,
reverb, pops, additive) simulates playback audio in a room
environment.

3.2. Crowdsourcing for Data Collection

After determining the perturbation space, we crowdsource JND
answers on Amazon Mechanical Turk (AMT). We require
workers to have above 95% approval ratings. We dont require
workers to have any specific device (headphones/earphones) for
listening. At the beginning of the Human Intelligence Task
(HIT), the subject goes through a volume level calibration test
in which loud and soft sounds are played alternatively. The
participants are then asked not to change the volume in the
middle of the HIT. Next, an attention test is presented where the
participant is asked to identify a word heard in a long sentence.
This removes participants that either do not understand English
or were not paying attention. Upon successfully choosing the
right word, the subject goes through two teaching tests, where we
train the workers on what kind of differences to look for before
we move on to the actual task. Each HIT contains 30 pairwise
comparisons, 10 each for one randomly chosen reference and
direction. Out of these 30 comparisons, 6 (20%) tests are sentinel
questions in the form of obvious audio deformations. If the
participant gets any of the 6 questions wrong, we discard their
data. Each audio recording is roughly 2.5 seconds long, and the
subjects can replay the files if they choose to. On an average,
it takes 7-8 minutes to complete a HIT. At the end, we also
ask for comments/suggestions/reviews from the participants on
their experience in doing this HIT. We launched 2000 HITs
and retained 1812 after validation, collecting about 55k pairs of
human subjective judgments.

We verify that the resulting dataset has the desired properties:

1. Balanced number of same or different answers: Our active
learning strategy predicts the JND of the listener given all
their previous answers. JND is a point at which the listener
is equally probable to say exactly same or different and so if
our model indeed works well, we should observe that there be
an almost equal number of “same” or “different” answers in
our dataset. This is precisely what we observe - we observe
25782 “same” to 26130 “different” answers.

2. Individual consistency checking: We check consistency
between all answers given by a listener and their final
predicted JND level; noise levels lower than JND should
say “same“ and higher than JND should say “different“. Low
value of user agreement would mean that the listener answered
randomly and/or our method of JND prediction is not accurate,
whereas a high value would mean that our model correctly
predicts JND and that the users don’t answer randomly. The
user agreement is around 88.3% which is high.

3.3. Training and architecture

We use a network inspired by [14] consisting of 14 convolutional
layers with 3×1 kernels, batch normalisation and leaky ReLU
units, and zero padding to reduce the output dimensions by half
after every step. The number of channels double after every 5
layers starting with 32 channels in the first layer. We also use
dropout in all convolutional layers. The receptive field of the
network is 214 − 1. We train the model using cross-entropy loss
using a small classification model that maps distance to predicted
human judgment.

We train this network for 1000 epochs, taking ≈ 3 days to
complete using 1 GeForce RTX 2080 GPU. As part of online
data augmentation to make the model invariant to small delay,
we decide randomly if we want to add a 0.25s silence to the audio
at the beginning or the end and then present it to the network.
This helps providing shift invariance property to the model, to
disambiguate that in fact the audio is similar when time shifted.

4. Results
4.1. Subjective Validation

We use previously published diverse large-scale third-party stud-
ies to verify that our trained metric correlates well on their task.
We show results of our models, and compare these with embed-
dings obtained from self-supervised models (e.g.OpenL3 [24])
and large-scale pretrained models (e.g.VGGish [25] trained on
Audioset [26]) as well as more conventional objective metrics
such as MSE, PESQ [2] and VISQOL [3].

We compute the correlation between the model’s predicted
distance with the publicly available MOS scores, using Spear-
man’s Rank order correlation (SC) and Pearson’s correlation co-
efficient (PC). These correlation scores are evaluated per speaker
where we average scores for each speaker for each condition.

As an extension, we also check for 2-alternative forced
choice test (2AFC) accuracy in which we present one reference
recording and two test recordings and ask listeners which one
sounds more similar to the reference. Each triplet is evaluated
by roughly 10 listeners. 2AFC checks for exact ordering
of similarity at per sample basis whereas MOS checks for
aggregated ordering, scale and consistency. We choose four
distinct classes of available datasets for our analysis:

1. VoCo [27]: consists of MOS tests to verify quality of 6
different word synthesis and insertion algorithms, hence not
sample-aligned data.

2. FFTnet [28]: consists of MOS tests for synthetic audio
generated by 5 different type of speech generation algorithms.
It introduces artifacts specific to SE (speech enhancement),
and are not sample-aligned due to phase change. The 2AFC
study consists of 2050 triplets of clean reference and noisy
test recordings.

3. Bandwidth Expansion [29]: consists of MOS tests for 3 dif-
ferent bandwidth expansion algorithms, aiming at increasing
sample rate by filling in the missing high-frequency infor-
mation. These audio samples consist of very subtle high-
frequency differences. The 2AFC study consists of 1020
triplets of clean reference and noisy test recordings.

4. Simulated: consists of 1210 triplets of clean reference and
noisy test recordings from our perturbation space described in
Section 3.1.

The results are displayed in Table 2, in which our proposed
method “scratch” has the best performance overall. We also
summarize a few other notable observations, listed below:
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Table 2: Spearman (SC), Pearson (PC) and 2AFC accuracy.
Models include: ours, (self)-supervised embeddings, and con-
ventional metrics. ↑ is better.

Type Name
VoCo [27] FFTnet [28] BWE [29] Simulated

SC PC SC PC 2AFC SC PC 2AFC 2AFC

Ours

Pre 0.60 0.90 0.37 0.32 77.30 0.00 0.23 70.50 83.90

Lin 0.30 0.45 0.40 0.29 77.00 0.48 0.36 76.60 83.60

Fin 0.46 0.71 0.45 0.30 73.50 0.50 0.66 86.00 80.30

Scratch 0.71 0.94 0.63 0.59 70.00 0.61 0.47 87.68 71.78

Self-sup
VGGish 0.10 0.23 -0.41 -0.44 63.00 0.51 0.50 52.30 76.20

OpenL3 0.27 0.36 0.12 0.17 65.20 0.53 0.53 61.10 73.50

Conv
MSE 0.18 0.80 0.18 0.15 66.00 0.00 0.26 49.00 43.00

PESQ 0.43 0.85 0.49 0.56 88.57 0.21 0.18 38.10 86.10
ViSQOL 0.50 0.75 0.02 0.35 79.00 0.13 0.09 44.40 84.20

• Neural-network-based metrics are more robust to non-sample-
aligned data - we see that most of our models, including
pre, perform better than conventional metrics on non-sample-
aligned synthetic audio samples in VoCo and FFTnet.

• PESQ and VISQOL have better 2AFC accuracy on FFTnet
and Simulated datasets but lower MOS scores suggesting
that these methods preserve ordering but not scale. We also
observe that pre has higher 2AFC accuracy but slightly lower
MOS scores, suggesting that it learns perceptual ordering but
not the scale. Interestingly, it performs better than scratch
on the above two 2AFC datasets, suggesting that training
on (related) classification may produce features that better
correlates with ordering (A is closer to C than B is to C).
Tuning on JND data could be considered as calibrating on the
scale (how much A is close to C).

• Though the pre model is robust to non-sample-aligned data, it
has problems on revealing high frequency subtle difference.
It is likely because this model is trained on a task ( sound
classification) that does not rely on these frequency bands. On
the contrary VGGish and OpenL3 perform relatively well as
they are trained on much larger-scaled tasks (AudioSet [26])
and thus are more reliant on high frequency perceptual
features. However, they perform worse on the first two tasks,
which may be because they are not trained directly on speech.

• Conventional metrics such as PESQ and VISQOL perform
better on VoCo and FFTnet than BWE, indicating they are
less correlated to human perception when measuring subtle
differences.

• Methods relying on spectrogram differences (e.g.VGGish,
OpenL3, MSE) correlate poorly with MOS. Although spectro-
gram is relatively robust to small shifts, the change in phase
can destabilize the amplitude [30], causing random variations.
When two signals are very similar, this variation becomes
dominant causing spectrogram differences to fluctuate and
hence, decorrelate with human perception as we see in VoCo
and FFTnet cases.

• OpenL3 performs better than VGGish across tasks. It may be
because OpenL3 was trained using self-supervision, mapping
both visual and audio onto the same embedded space, which
preserves more information than classification.

4.2. Speech enhancement using trained loss

We show utility of our trained metric as a loss function for Speech
Enhancement (SE) task. We use the dataset available in [31],
consisting of around 11,572 utterances for training and 824
files for validation. This dataset consists of 28 speakers equally
split between male and female speakers containing 10 unique
background types across 4 different SNR’s. Our denoising
network (separate from the learned loss network) consists of

Figure 3: Pairwise comparison of denoising methods. Our
method (below) is preferred over each baseline (above). Results
are divided into tranches based on difficulty from pink=hard to
blue=easy. Chance is 50% (dotted line). ↑ is better for ours.

16 layers of fully convolutional context-aggregation network as
in [14]. We keep the size of the SE model the same for fair
comparison. We compute losses from all 14 layers of our trained
loss function and add them to get the total loss. We use Adam
Optimiser [32] with a learning rate of 10−4, and train for 400
epochs.

We compare our SE model with the state-of-the-art method
based on deep feature loss [14] and a few other notable baselines
including Wavenet [33], OMLSA [34] and Wiener Filter [35].
We randomly select 600 noisy recordings from the validation
set of [31] and enhance them using the above algorithms. We
perform A/B preference tests on AMT, consisting of Ours vs
baseline pairwise comparisons. Each pair is rated by 15 different
turkers and then majority voted to see which method performs
better. To analyse these results, we divide our results into 4
groups: from having highest input noise (Hard) to lowest input
noise (Easy). Results are shown in Figure 3. All results are
statistically significant with p < 10−4.

We observe that our model is preferred on all levels of noises
across all baseline methods. Specifically looking at ours vs
deepfeatures, we observe that our model does best for high SNR
recordings, where the degradation caused strong background
noise is less noticeable. This highlights the usefulness of training
our perceptual loss on JND data. Given that our loss function
is trained on JND data, it is able to better correlate with local,
subtle differences than other loss functions.

5. Conclusion and Future Work
We propose a framework to collect human “just noticeable
difference” judgments on audio signals. Directly learning a
perceptual metric from our data produces a metric that correlates
better with MOS tests than traditional metrics, such as PESQ [3].
We also showed that a model pre-trained on classification tasks
has the correct order but incorrect perceptual scale which can
be calibrated by training on our data. Furthermore, we show
that the metric can be directly optimized as a loss function, in
the task of speech enhancement. A similar story has emerged
in the computer vision literature, where trained networks have
been shown to both correlate well with human perceptual
judgments [13] and serve well as an optimization objective [36],
compared to traditional metrics such as SSIM [37].

We would like to extend this dataset in the future to explore a
broader range of types of perturbations, and do so with a greater
density of samples at a wider range of intensities. We would also
like to include content beyond speech, particularly music. Such
data could be leveraged to study more broadly the manifold of
audio perception, and enable a broader set of applications.
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