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Sneha Das1, Tom Bäckström1, Guillaume Fuchs2

1Department of Signal Processing and Acoustics, Aalto University, Finland
2Fraunhofer IIS, Germany

(sneha.das, tom.backstrom)@aalto.fi

Abstract
Speech codecs can use postfilters to improve the quality of the
decoded signal. While postfiltering is effective in reducing cod-
ing artifacts, such methods often involve processing in both the
encoder and the decoder, rely on additional transmitted side in-
formation, or are highly dependent on other codec functions for
optimal performance. We propose a low-complexity postfilter-
ing method to improve the harmonic structure of the decoded
signal, which models the fundamental frequency of the signal.
In contrast to past approaches, the postfilter operates at the de-
coder as a standalone function and does not need the transmis-
sion of additional side information. It can thus be used to en-
hance the output of any codec. We tested the approach on a
modified version of the EVS codec in TCX mode only, which
is subject to more pronounced coding artefacts when used at
its lowest bitrate. Listening test results show an average im-
provement of 7 MUSHRA points for decoded signals with the
proposed harmonic postfilter.1

Index Terms: Speech coding, Postfiltering, Fundamental fre-
quency

1. Introduction
Speech coding is required in all applications which store or
transmit speech. While codecs based on the ACELP provide
good quality encoding for transmission, it comes at the cost of
high complexity [1]. Frequency domain coding algorithms like
the TCX mode in the EVS are of lower complexity and per-
ceptually transparent at moderate to high-bitrates [2]. However,
the performance degrades at lower bitrates due to spectral holes
arising from the shortage of bits. The resulting sparse signals
contain annoying artifacts such as musical noise.

In standard codecs pre- and post-filtering methods aid in
the removal of spectral holes, thereby improving the quality of
the decoded signal. For instance, the LTP-postfilter in the EVS
codec improves the harmonic structure in the voiced parts of
the decoded signal by attenuating the spectral energy between
harmonic peaks [3]. To achieve the desired effect, it utilizes
the LTP parameters transmitted in the bitstream to design an
IIR comb-filter. Another approach for reducing the effect of
spectral-holes is noise-filling by, for example, intelligent gap
filling (IGF) which is used to fill spectral gaps at high operating
bitrates, and replicate high frequency components using copy-
up from lower frequencies, at lower operating bitrates [1, 4].
Further methods used to improve the quality of the decoded sig-
nal include formant enhancement and pitch sharpening [1].

While postfiltering methods are effective in improving the
quality of the decoded signal, many methods require process-
ing both at the encoder and the decoder, thus adding computa-

1Sample speech files at: https://harmonicPFSoundSamples
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Figure 1: Block diagram of the system architecture.

tional costs at both ends. This can be problematic in resource-
constrained devices. Additionally, parametric postfiltering
methods transmit the parameters as side information, hence re-
quiring additional overhead in bit consumption. In compar-
ison, conventional non-parametric methods are mostly blind
enhancement techniques manually tuned to improve coded
speech. Model-based postfiltering approaches, which employ
information on the inherent structure of speech, show improve-
ments in decoded speech quality: In our previous work, we have
proposed postfiltering methods based on spectral envelope mod-
elling [5] [6]. While the methods demonstrate considerable out-
put gain, their performance could potentially be improved by
using a model for the fundamental frequency, F0.

With the focus on improving the harmonic structure of
coded signals, we begin with a simple model: a linear post-filter
of low-complexity with an integrated F0 model. Since this work
is part of a larger objective of devising methods suitable for
acoustic sensor networks with resource-constrained devices, we
design the postfilter such that it is a standalone functional block
at the decoder and does not need the transmission of any side
information. For realistic and fair evaluation of the postfilter,
we need a low-complexity codec optimized for speech. While
the TCX mode in codecs like the EVS are low in complexity,
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Stage Process WMOPS

Features
Cepstrum (log-magnitude) 0.3099
linear→ log-magnitude 0.3099

Filtering Matrix multiplication: Ad 17.163

Postprocessing
Magnitude→Complex 0.0119
log-magnitude→linear 0.2980

Total 17.88

Table 1: Complexity of the proposed algorithm.

it is designed to complement speech-oriented algorithms like
ACELP. Therefore, we utilize a modified version of the EVS
codec in TCX mode, which was optimized to achieve a fair
quality for speech signals even at low bit-rates, without the ad-
ditional complexity of ACELP. Furthermore, since the proposed
postfilter is agnostic to the codec, it can be applied on any low
bit-rate transform-domain codecs like LC3 and Opus [7] [8].
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Figure 2: Plot of the cumulative variance over the singular val-
ues of filter A.

2. Methodology
2.1. Signal Model

Speech is produced when a glottal excitation is shaped by the
vocal tract response, whereby the vocal tract can be treated
as a filter in the time-domain [1]. Convolution in the time-
domain corresponds to multiplication in the frequency-domain,
and summation in the log-frequency domain. Hence, in the
log-frequency domain, clean speech can be represented as s =
xF0 +xenv, where xF0 ∈ RK×1 is the excitation and is a func-
tion of F0, the spectral envelope xenv ∈ RK×1 represents the
vocal tract response, and K is the number of frequency-bins [1].

We model the decoded signal y as follows: log |y| =
xF0 + xenv + xn, where log |y| is the decoded signal in the
log-frequency domain, and xn corresponds to the noise com-
ponents in the decoded speech. To estimate the clean speech
signal, we define a linear model ŝ = ATd, ŝ ∈ RK×1, where
d ∈ R(3K+1)×1 is the feature vector comprised of the three
aforementioned features computed from y and is composed of
the representations of the speech signal: xF0 ,xenv, and the
coding-noise: xn. To obtain the harmonic model xF0 , we first
compute the fundamental frequency by picking the largest peak,
corresponding to the range 50 to 400 Hz, in the cepstral domain,

F0 = max(F−1{log |y|}), (1)

and then transform it back to the frequency domain to obtain
a modulated sinusoid xF0 , whose frequency matches the F0

of the input signal. We use linear prediction on the original
signal y to derive an envelope model xenv, and utilize the log-
magnitude spectrum of y to model the coding-noise.

Our goal is to define a filter A, which partitioned as A =
[AF0 ,Aenv,An,b]T , such that ŝ = AF0xF0 +Aenvxenv +

Anxn, where A ∈ R(3K+1)×K , b ∈ RK×1 is the bias vec-
tor, and AF0 ,Aenv,An ∈ RK×K are the regions of the filter,
constituting information about the harmonic structure, spectral
envelope and coding-noise, respectively. We estimate A from
data, and begin by defining the error matrix as:

ET = Ŝ− S = ATD− S, (2)

D ∈ R(3K+1)×N is the feature matrix, S ∈ RK×N is the true
log-spectrum of speech, and N is the number of speech frames
used for training. To obtain an optimum filter in the minimum
mean square error (MMSE) sense, we minimize the mean of
squared error and subsequently solve the equation as follows:

∂Tr(ETE)

∂(A)
, 0 =⇒ A = (DDT )−1DST . (3)

2.2. System Overview

As motivated in Sec. 2.1 we model speech as the sum of the log-
arithm of the spectral envelope and the F0-model. Therefore, as
input features we have chosen (i) F0-model (ii) logarithm of the
spectral envelope, (iii) log-magnitude spectrum of the decoded
speech. The feature vector is computed from the decoded sig-
nal, thus jointly modelling the speech and the coding-noise. The
pre-processing involves transforming the time-domain signal to
the frequency-domain using STFT, with 30 ms window sizes
and an overlap of 10 ms. The block-diagram of the system is
presented in Fig. 1.

We investigate the modelling approach in both the fre-
quency domain (FD) and the perceptual domain (PD) to deter-
mine the domain more suited to the proposed approach. For
the PD approach, the signal is transformed to the perceptual-
domain by weighting the spectrum with the perceptual enve-
lope, following which it is transformed to the log-domain; the
perceptual-domain transformation is omitted for the FD ap-
proach. We compute the spectral envelope from the decoded
signal using linear prediction [1]. To compute the F0-model we
use the largest cepstral coefficient i as per Eq. 1 and the two
adjacent coefficients i − 1, i + 1 to obtain a modulated har-
monic signal vector. In this work we apply the proposed postfil-
ter along with the LTP-postfilter [9] since it sharpens the pitch
contour of the decoded signal and hence, aids in the extraction
of the cepstral peak.

2.3. Computational Complexity

The algorithmic complexity is provided in Table 1 in terms of
weighted million operations per second (WMOPS) [10]. We
mainly present the complexity of the post-filtering part in the
algorithm and the standard pre- and post-processes compris-
ing of STFT and transformations between the frequency- and
perceptual-domains are excluded in the analysis. The main con-
tribution of the complexity is from the filtering operation, at
≈17.88 WMOPS, which is close to the magnitude of complex-
ity of the underlying encoder and decoder. However, since 25%
of the singular values of A represent 95% of the variance as
shown in Fig. 2, we can correspondingly reduce the dimensions
of A to obtain ≈75% reduction in complexity, with only minor
reduction in accuracy.

3. Evaluation and Results
We use the TIMIT database for training and evaluation of the
postfilter. The filter was trained over 1000 randomly chosen
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(b) Decoded with LTP-postfilter
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(c) Enhanced Signal

0.5 1.0 1.5 2.0 2.5

Time (s)

1.6

3.2

4.8

6.4

F
re

q
u
e
n
c
y
 (

k
H

z
)

-100

-80

-60

-40

-20

0

20

Figure 3: Spectrograms of a test sample: (a) Clean signal, (b) Decoded signal with LTP-postfilter, (c) Enhanced signal.

speech sentences from the training-set, comprising of 340 sen-
tences spoken by females and the rest spoken by males; this
distribution of male vs. female samples is due to the composi-
tion of the dataset, containing 70% male and 30% female sam-
ples [11]. Since we observed a difference in performance be-
tween male and female samples, we train the system separately
for males and females and the results presented here are using
gender specific filters. However, later experiments with gen-
der blind filters produced identical objective results and further
analysis suggests that the difference in performance between
genders is mostly connected to the harmonic model, which was
found to be more accurate for higher F0 values.

The spectrograms of the clean, decoded and estimated sig-
nals of a test sample are shown in Fig. 3. As seen in the ex-
ample, the harmonic structure of the estimated signal is more
pronounced and closer to the clean speech than that of the de-
coded signal with the LTP-postfilter, which contains consider-
able spectral-holes and temporal discontinuity.

3.1. Objective Results

We tested the system over 118 test samples with 40 female
and 78 male samples; each sample is approximately 4 seconds
long and is randomly selected from the test set of the TIMIT
database. The evaluation results are described separately for fe-
males (F) and males (M) and, the FD and PD approaches. We
evaluate the system in terms of the Perceptual SNR (PSNR),
PESQ and POLQA [1].

The distributions of the objective results are shown in Fig. 4
using the violin-plots, which depicts 1. the summary statistics
of the results using the median and inter-quartile range (IQR),
2. the density trace of the results [12]. Note that we use the
decoded signal with LTP-postfilter as the baseline reference,
represented as dec-F and dec-M in Fig. 4. The PSNR is the
ratio of the signal to noise in the perceptual domain and the
perceptual weights are computed from the spectral envelopes of
the clean and decoded signals. Fig. 4 (a), (d) show the abso-
lute PSNR and ∆PSNR, i.e., difference between the estimated
and decoded signals. We observe that the PSNR of the esti-
mated signal is higher than the decoded signal by ≈1 dB and
this improvement is consistent for both the domains and gen-
ders. However, PSNR of the estimate for males using the PD
approach has a higher IQR, i.e., higher variability in the PSNR.

The absolute and ∆PESQ scores are presented in
Fig. 4 (b), (e), respectively. For females, the PESQ score of
the estimated signal is higher than the PESQ score of the de-
coded signal, both in the FD and PD. However, on average the
PESQ score of the estimated signal for males is lower than that
of the decoded signal. Furthermore, the POLQA and ∆POLQA
scores presented in Fig. 4 (c), (f) demonstrate a positive POLQA

improvement, on average, for both genders. In addition, female
samples show higher POLQA improvement in contrast to male
samples; the IQR for females lies between 0.5 to 0.75 ∆MOS.

3.2. Subjective Results

For subjective evaluation of the proposed postfiltering method,
we conducted a MUSHRA listening test. The test, compris-
ing of 12 items with 6 conditions each, were presented to ev-
ery participant. The conditions are (1) Lower-anchor: signal
low-pass filtered at 3.5 kHz, (2) LTP postfilter: decoded sig-
nal with LTP postfiltering, (3) Postfilter-FD: proposed postfilter
using FD approach, (4) Postfilter-PD: proposed postfilter using
PD approach, (5) Hidden Reference, (6) Decoded: noisy signal.

Out of the total 12 samples, 6 were male and 6 were female.
The samples were selected as follows: (a) 4 samples, 2 female
and male each, were randomly picked from the test set of 118
samples (items F5, F6, M5, M6). (b) 4 samples, 2 female and
males each which showed the highest POLQA improvements
were included in the test (items F1, F2, M1, M2). (c) The re-
maining 4 samples comprised of the 2 male and 2 female sam-
ples showing the least POLQA improvement. We adopted this
approach to select samples in order to obtain an indication of the
subjective performance bounds. Additionally, the extreme sam-
ples could potentially show conditions under which the system
performs optimally or under-performs.

The results of the test with 10 naive listeners are depicted
in Fig. 5 in absolute scores (a) and difference scores (b) with
respect to the decoded signal. The LTP-posfiltered condition is
rated higher than the decoded condition for all the items and
conditions. Also, the proposed postfilter in both the domains
is rated higher than decoded signal on average. Postfilter-PD
is scored highest for most of the items and the improvement
is generally largest for female items. However, the scores of
postfilter-FD relative to the LTP-postfiltered condition is incon-
sistent over the items. The PD-postfiltering approach is rated
higher than the decoded signal by 7 MUSHRA points, on av-
erage. Hence, we can conclude that the proposed postfiltering
method with F0-model improves the quality of the decoded sig-
nal both objectively and subjectively and this improvement is
consistently observed in the PD-approach.

4. Conclusions
In this paper, we proposed a postfiltering method for speech
and audio coding which incorporates the inherent information
in speech, specific to its harmonic structure. Since the features
of the postfitler are computed from the decoded signal, it adapts
to the temporal changes in speech signals. Objective evaluations
of the method demonstrate positive improvement in the PSNR,
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PESQ, POLQA, for female (F) and male (M) samples in the Frequency domain (FD) and Perceptual domain (PD).
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Figure 5: Results of the MUSHRA listening test: (a) Absolute MUSHRA scores, (b) ∆MUSHRA scores with respect to decoded signal.

PESQ and POLQA scores of the samples postfiltered with the
proposed method, with respect to the decoded signal. However,
the improvement is higher for females than for males. In terms
of the subjective evaluation of the method, the MUSHRA lis-
tening test indicates a higher rating for the samples postfiltered
using the proposed PD approach. The MUSHRA score of the
PD approach is on average 7 MUSHRA points higher than the
decoded signal with LTP-postfiltering. Furthermore, from the
perceptual analysis of the samples we conclude that the pro-
posed postfilter aids in removing the artefacts caused due to the
discontinuities in the harmonic structure in decoded signal. In
addition, at mid- to high-frequency ranges the enhanced signal
is marginally biased towards higher energies, thereby imparting

a faintly rough characteristic to the signal. This issue will be
addressed by a more accurate model of the harmonic structure
in coherence with the coding-noise in future work. The pro-
posed method is complementary to the postfilters which model
the spectral envelope of speech, whereby the models together
can comprehensively enhance the decoded signal [5]. Unifying
the envelope and harmonic modelling approaches along with
phase modelling is left for future work. Further on, while the
complexity of the postfilter is close to the complexity of the un-
derlying codec, 95% of the variance is contained in 25% of the
filter coefficients, whereby a follow-up dimensionality reduc-
tion on the postfilter can reduce the complexity by 75%.
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