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Abstract
In this paper, we propose an utterance invariant training (UIT)
specifically designed to improve the performance of a two-pass
end-to-end hybrid ASR. Our proposed hybrid ASR solution
uses a shared encoder with a monotonic chunkwise attention
(MoChA) decoder for streaming capabilities, while using a low-
latency bidirectional full-attention (BFA) decoder for enhancing
the overall ASR accuracy. A modified sequence summary net-
work (SSN) based utterance invariant training is used to suit
the two-pass model architecture. The input feature stream self-
conditioned by scaling and shifting with its own sequence sum-
mary is used as a concatenative conditioning on the bidirec-
tional encoder layers sitting on top of the shared encoder. In
effect, the proposed utterance invariant training combines three
different types of conditioning namely, concatenative, multi-
plicative and additive. Experimental results show that the pro-
posed approach shows reduction in word error rates up to 7%
relative on Librispeech, and 10-15% on a large scale Korean
end-to-end two-pass hybrid ASR model.
Index Terms: speech recognition, ASR, utterance invariant
training, sequence summary network, two-pass ASR, streaming
ASR

1. Introduction
End-to-end automatic speech recognition (ASR) models have
gained popularity due to their simplicity and ease of train-
ing [1, 2, 3, 4, 5, 6, 7]. Such end-to-end (e2e) systems combine
all different components of conventional hybrid DNN-HMM
model into a single network, which can be jointly trained with
multiple losses. These end-to-end systems perform at par or
even better than conventional ASR systems with sufficiently
large amount of data. However, most of the well performing
e2e systems use bi-directional long short-term memory units.
Hence they cannot be used for online streaming applications.

Recent efforts have focused on building e2e ASR systems
with streaming capability [1, 7, 8, 9]. Recurrent neural network
transducer (RNN-T) [10] and monotonic chunkwise attention
(MoChA) [11, 12], in particular, have become popular and are
being deployed in production setup [1, 2]. While both streaming
and non-streaming e2e models perform well on clean test sets,
their performance on noisy test sets still lags significantly [13,
14, 15, 16, 17]. Speaker variance is one major reason for this
along with factors such as background noise.

Several speaker and/or utterance adaptive techniques have
been proposed to improve conventional ASR model perfor-
mance [18, 19, 20, 21, 22, 23, 24, 25]. These techniques broadly
fall under two categories - (1) training on speaker specific data
[26, 27, 28, 18], and (2) adaptive training on speaker agnos-
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tic input features [24, 25, 19, 29, 30, 31]. Adaptive train-
ing transforms the speaker-specific input features to a speaker-
independent feature space using techniques like feature space
maximum likelihood linear regression (fMLLR) [32], adversar-
ial training [33], or with the help of auxiliary input features such
as i-vectors [20]. Since the model is trained with speaker inde-
pendent features, it doesn’t need any post training for a new test
speaker.

Many research works have tried to adapt these conventional
speaker adaptive training techniques for deep neural network-
based hybrid ASR systems [23, 24, 25]. In [24] authors in-
troduced an alternate approach of sequence summary to avoid
any use of external model or speaker-specific data. Specifically,
an auxiliary neural network is used to extract various acous-
tic characteristics from input audio. Sequence summary, which
is average of the output of the auxiliary network, is used to
bias the input audio features and the entire network is trained
jointly. Interestingly, this simple approach was able to give per-
formance gains similar to the widely used i-vector-based tech-
niques. However, unlike earlier methods, this technique can be
integrated with neural network-based ASR components in an
end-to-end fashion. In subsequent work, [25] extended this ap-
proach to attention-based end-to-end ASR systems and showed
consistent performance gains. However, these experiments
were done over small datasets like WSJ [34], TEDLIUM [35],
containing only few hundred hours of speech.

In this work, we propose to extend the sequence summary
based utterance invariant training (UIT) to the recently proposed
two-pass e2e hybrid architecture [3]. The two-pass hybrid de-
coding strategy was proposed to enhance the overall perfor-
mance of a streaming ASR system. In the first pass, an RNN-T
model is used to decode the input audio for providing stream-
ing or real-time speech-to-text capabilities. In the second pass,
the embeddings from the shared encoder is passed to a listen
attend and spell (LAS) [36] style bidirectional full-attention
(BFA) decoder [15, 37] for improved accuracy. We also inves-
tigate a more general recipe for sequence summarization where
we learn not only a biasing feature [25] but also an additional
scaling factor. We propose to combine three different types of
conditioning namely, concatenative, additive and multiplicative,
explored in [38] for feature-wise transformation over a wide va-
riety of application domains including speech recognition. We
evaluate the performance of this utterance invariant two-pass
architecture on LibriSpeech[39] corpus containing 1K hours of
speech data, as well as a large scale Korean corpus with ∼10K
hours of speech data.

The remainder of this paper is organized as follows. In Sec-
tion 2, we introduce our proposed sequence summary based ut-
terance invariant training for hybrid e2e system. In Section 3,
we present our experimental setup, followed by the results on
LibriSpeech [39] and a large scale Korean database along with
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Figure 1: Vanilla sequence summary network based utterance
invariant training of end-to-end ASR models.

their detailed analysis. Finally, we conclude in Section 4.

2. Utterance invariant two-pass hybrid e2e
ASR model

In this section, we present the proposed utterance invariantly
trained two-pass hybrid end-to-end ASR. It combines the idea
of two-pass decoding with a shared encoder to improve the per-
formance of a streaming e2e ASR, and utterance invariant train-
ing using a sequence summary network to improve the overall
performance of the two-pass model.

2.1. Vanilla utterance invariant training

Sequence summary networks (SSN) provide an alternative to
the popular speaker or utterance invariant training using i-
vectors. A sequence summary network computes the length
normalized summary of a sequence x non-linearly transformed
by neural network model given by

s = 1/T

T∑
t=1

g(xt), (1)

where T denotes the length of the input sequence, and g(.) de-
notes the non-linear neural transform. A block schematic of
our vanilla sequence summary network based encoder-decoder
architecture is shown in Fig. 1.

In the conventional utterance invariant training proposed
and used in [24, 25], the SSN output is used to conditionally
bias the input to the encoder after a linear transformation, given
by

x′ = x+ Ps (2)

where P denotes the linear projection layer. This approach can
be referred to as additive conditioning. However, our experi-
ments with this vanilla conditional biasing using SSN based
utterance invariant training did not show any improvement over
a baseline bi-directional encoder based full-attention model.

Uni-Enc

MoChA
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SSN

Scale
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Figure 2: Block schematic of the proposed utterance invariant
training for a two-pass hybrid MoChA-BFA e2e ASR architec-
ture.

2.2. Conditionally scaled and biased utterance invariant
training

Another popular way of conditioning the input or any layer is
multiplicative conditioning. Multiplicative conditioning is con-
sidered to be useful in learning the inter-relationships between
the conditioned and conditioning information. However, in the
current case, the conditioned sequence is the input features and
the conditioning information is also derived from the same se-
quence using a SSN, which can be viewed as self-conditioning.
Multiplicative or scaled conditioning can also be viewed as a
soft-gating mechanism which adaptively emphasizes or deem-
phasizes different components of an input vector that is being
conditioned. In this paper, we propose to combine multiplica-
tive and additive conditioning using the sequence summary net-
work output to conditionally scale as well as bias the input given
by

xn = w � x+ b (3)

where w = Ps and b = Bs are the conditional scale and bias,
with P and B denoting linear transforms or projections. � de-
notes element-wise multiplication.

In this paper, however, the motivation is primarily to train
a two-pass hybrid ASR with shared encoder in an utterance in-
variant manner. Our proposed two-pass hybrid ASR model ar-
chitecture and a modified utterance invariant training to suit this
architecture are discussed in the next two sections.

2.3. Two-pass hybrid MoChA-BFA e2e ASR

The block schematic of the two-pass end-to-end ASR is shown
in Fig. 2. It consists of a shared encoder with several unidirec-
tional long short-term memory (LSTM) layers stacked on top
of each other. Outputs of first three layers of the encoder are
temporally subsampled by a factor of two, yielding an over-
all subsampling factor of 8 at the shared encoder output. This
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output feeds into two different decoders, one a streaming mono-
tonic chunkwise attention (MoChA) decoder and another a bidi-
rectional full-attention (BFA) decoder. A bidirectional encoder
stack with at least one backward LSTM layer processes the out-
put of the shared unidirectional encoder before it is decoded us-
ing the full-attention decoder. The first backward LSTM layer
takes its input from the last but one forward layer in the shared
encoder. The output of the top-most forward layer of the shared
encoder and the first backward layer of the bidirectional encoder
are concatenated before they are fed into the next bidirectional
LSTM (BLSTM) layer in the bidirectional encoder stack.

2.4. Utterance invariant training for two-pass architecture

The shared encoder in our two-pass architecture is unidirec-
tional to enable streaming capabilities. Owing to this require-
ment we cannot condition the input features or any of the layers
higher up in the shared encoder or the MoChA decoder using
a complete input sequence summary. One option is to condi-
tion with the partial sequence summary so that the entire shared
encoder is conditioned to be utterance invariant. However, our
experiments on conditioning the input features with partial se-
quence summary did not show any improvement over our base-
line hybrid MoChA-BFA models.

In order to address this issue, we propose to condition the
bidirectional encoder layers by feeding the self-conditioned or
normalized input sequence, given by Eq. (3), into the bidirec-
tional encoder, as shown in Fig. 2. This self-conditioned input
feature sequence summary is concatenated with the unidirec-
tional shared encoder embedding hu and the output of the first
backward layer b1 in the bidirectional encoder stack. The con-
catenated input [hu, b1, xn] is fed into the next bidirectional en-
coder layer. We also concatenatively condition every layer in
the bidirectional encoder stack with the same normalized input
xn in our experiments.

The proposed approach can be viewed as feeding the bidi-
rectional decoder with a stream of utterance normalized input
features, as well as conditioning the bidirectional encoder lay-
ers with the sequence summary using the bias term in Eq. (3).
We also tried applying SSN on the output of the shared encoder.
However, the results were not encouraging and several experi-
ments had model convergence issues. There could be several
ways of combining or conditioning, and also the choice of in-
put sequences for computing the sequence summary. A more
exhaustive exploration of all these possibilities would make an
interesting piece of research, but is beyond the scope of this pa-
per.

3. Experiments and results
In this section, we present our experimental setup, datasets,
and results on the popularly used open-source Librispeech cor-
pus [39]. We also present results on a large-scale in-house Ko-
rean corpus with large variability in terms of speakers, record-
ing devices, environments, and domains.
3.1. Experiments on librispeech

3.1.1. Effect of vanilla and modified SSN on BFA models

Experimental results from a simple utterance invariant training
on a bi-directional full-attention (BFA) model are shown in Ta-
ble 1. The initial set of experiments was to validate the useful-
ness of the vanilla SSN (vSSN) based utterance invariant train-
ing on a simple bidirectional encoder based full-attention e2e
ASR model. The model architecture and size of the BFA model

Table 1: Effect of vanilla SSN (vSSN) and modified SSN (mSSN)
based utterance invariant training on word error rates (WERs)
of a bi-directional full-attention (BFA) Librispeech model.

Model test-clean test-other
BFA 4.85 15.39

BFA + vSSN 4.82 15.01
BFA + mSSN 4.55 13.93

Table 2: Effect of adding more bidirectional layers on top of the
shared unidirectional encoder in a hybrid MoChA-BFA model.

Model test-clean test-other
BFA 1B 5.10 15.83
BFA 2B 4.97 15.35
BFA 3B 5.13 15.49
BFA 4B 5.15 15.51

is same as that used in [15]. The vanilla SSN is similar to
[25] with three fully connected feedforward layers. The first
two layers have tansig activation with 256 units, and the last
layer is linear with 64 units. In these initial experiments, we
do not use any data augmentation techniques. The models are
trained for around 25 full epochs using a training recipe built
in-house using the Tensorflow 2 Keras APIs. It can be seen
that the vanilla SSN did not show any significant improvement
over the baseline results, while the scaled-shifted modified SSN
(mSSN) shows good improvement. It is difficult to find a rea-
son as to why the vanilla SSN does not show any improvement
since both additive and multiplicative conditioning have shown
improvements in literature [38]. However, instead of using a
fixed projection on the sequence summary, scaling and shifting
it with a data-dependent weight and bias seem to be better suited
for conditioning the encoders in the current case. One argument
in favor of multiplicative conditioning is that it can better cap-
ture the correlations between the conditioning and conditioned
data. It can also be interpreted as a soft-gating mechanism to
relatively emphasize or deemphasize different dimensions of
the input. More detailed comparative experiments of different
conditioning and adaptive training variants need to be explored
to find a more definitive answer.

3.1.2. Effect of deeper bidirectional encoder stack in hybrid
MoChA-BFA ASR

In the proposed two-pass MoChA-BFA model architecture, in-
creasing the depth of the bidirectional encoder could be one way
of improving the overall accuracies of the hybrid ASR. Table 2
shows the effect of varying the bidirectional encoder depth from
1 to 4 layers. It can be seen that increasing the depth does
not seem to have a significant impact on the performance of
the BFA decoder, except for some marginal improvements for
a depth of two layers. In these experiments, the models are
trained from scratch by omitting the MoChA decoder and the
SSN part completely from Fig. 2.

3.1.3. Effect of modified SSN based UIT on hybrid MoChA-BFA
ASR

In this section, we study the effect of utterance invariant train-
ing on the proposed two-pass hybrid model architecture. Ta-
ble 3 shows the results for various depths of the bidirectional
encoder and for the cases with and without UIT. As compared
to the previous two sections, spectral augmentation based reg-
ularization is enabled for experiments in this section. This is
reflected in the improved baseline results of the two-pass model
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Table 3: Effect of modified SSN based UIT on hybrid MoChA-
BFA model with varying number of bidirectional layers.

w/o UIT with UIT
Model cln oth cln oth

MoCHA BFA 1B 4.81 12.71 4.57 12.49
MoCHA BFA 2B 4.83 12.56 4.49 12.45
MoCHA BFA 3B 4.77 12.75 4.45 12.50

as compared to the earlier BFA based experiments, especially
for test-other. It can be seen that increasing the depth of the
bidirectional encoder does not seem to have much effect in the
case of Librispeech models. However, utterance invariant train-
ing provides consistent ∼2-7% relative improvement in WERs
over the baseline training for all depths.

3.2. Experiments on large scale Korean ASR system

In this section, we present experimental results for the proposed
utterance invariant training on a large scale internal Korean cor-
pus of around 10K hours [1]. The data consists of mostly com-
mand and search queries recorded on various mobile and televi-
sion devices. Multi-condition training is simulated by generat-
ing another 10K hours of data using a combination of far-field
or acoustic room simulation and additive noise [40, 5, 15]. We
hypothesize that this large-scale dataset with large variability in
terms of speakers, devices, environments, and domains may be
more suited for the utterance invariant training than the more
homogeneous Librispeech dataset. A randomized set of around
1 hour is held out as validation data.

The baseline two-pass hybrid MoChA-BFA model was
trained in two steps. The MoChA model, with only the shared
encoder, was trained using our inhouse Tensorflow 2 Keras
APIs based tool for around 10 full epochs till the performance of
this model saturated. Standard layerwise pretraining [41] of the
encoder along with spectral augmentation [14] were used. The
shared encoder has six unidirectional LSTM layers with 1536
units each, and have an overall temporal subsampling of 8 with
respect to the input sequence. In the second step, one backward
layer with 1536 units was added on top of the shared encoder.
This backward layer combined with the top-most forward layer
of the shared encoder form the bidirectional encoder that feeds
the full-attention decoder. The addition of only one backward
layer was chosen to keep the overall 2nd pass latency low while
trying to improve upon the MoChA decoder hypothesis during
the 1st pass. After training the above model and SVD com-
pression of this layer, it was seen that this 2nd pass decoding
added around 80ms additional latency to the original approx-
imately 150ms latency of the MoChA decoder, which is very
much within the requirements of a streaming ASR solution.

This baseline model was now converted into an utterance
invariant model by adding a sequence summary network, as
shown in Fig. 2. Also, at this stage, the depth of the bidirec-
tional encoder is increased from one to three, while trying to
keep the overall number of parameters in the bidirectional en-
coder roughly the same as that in the previous stage. All layers
in the bidirectional encoder are reduced to 512 units instead of
the earlier single backward layer with 1536 units. The scaled-
shifted input feature sequence from the SSN is concatenated
with each bidirectional layer and fed to the next layer. Since the
decoder from the previous stage received an encoder embedding
vector of size 1536 ∗ 2, we use a simple projection layer to map
the modified encoder output from 512 ∗ 2 + 40 to 1536 ∗ 2,
where 40 is the dimension of the input features.

The results of our proposed utterance invariant training on

Table 4: Effect of utterance invariant training on the perfor-
mance (WER) of a large scale Korean two-pass ASR system.

Model CSQ Dict Far
MoChA BFA 1B (Base 1B) 7.05 23.43 29.98
Base 1B + long-train 6.88 22.18 31.28
Base 3B + UIT 6.33 20.12 25.34

Table 5: Effect of UIT on the performance (WER) of MoChA
model part of the two-pass ASR.

Model CSQ Dict Far
MoChA 8.47 27.58 36.44
MoChA + long-train 8.85 27.03 38.90
MoChA + UIT 7.59 23.37 35.47

the large scale Korean e2e ASR model are shown in Table 4.
The results are presented for three different test conditions,
namely typical personal assistant command and search queries
(CSQ), open or general domain dictation (Dict), and far-field
mixed test sets. It can be seen that the performance of the hy-
brid ASR improves by approximately 10.2%, 14.1%, and 15.5%
relative to the base model (Base 1B) for the CSQ, Dict, and Far
test sets, respectively. The base model was also allowed to train
for an additional 7 full epochs to see if there are any long-train
effects. It can be seen that long-train has around 2% and 5%
relative improvement for CSQ and Dict cases, respectively.

3.2.1. Effect of UIT on MoChA model

It is generally known that multi-task training with multiple de-
coders and loss functions and with a shared encoder can have
a mutually beneficial effect on both the decoders. In order to
verify this hypothesis, we present the results of the MoChA
decoder before and after utterance invariant training. It can
be seen from the results in Table 5 that the improvements in
the BFA decoder has a positive effect on the MoChA decoder.
The MoChA decoder performance improves by around 10.4%,
15.2% and 2.7% for the CSQ, Dict and Far test sets. This is pos-
sibly because the shared encoder is trained better due to the UIT
training, and has a multi-task regularization effect on the perfor-
mance of the MoChA decoder. However, unlike the BFA model
long training did not have any positive impact on the MoChA
model whose performance rather fluctuated and marginally de-
teriorated.

4. Conclusions
In this paper, we presented a new utterance invariant train-
ing strategy using sequence summary networks for training a
two-pass MoChA-BFA hybrid ASR. We proposed a scaled and
shifted sequence summary network which combines both mul-
tiplicative and additive conditioning specifically designed for a
two-pass ASR model architecture. In order to retain the unidi-
rectional streaming capability of the MoChA decoder, the input
sequence summary is applied directly to the bidirectional en-
coder by skipping the shared encoder. The proposed utterance
invariant training shows up to ∼7% relative improvement on
Librispeech models, and ∼10-15% for different test sets on a
large scale Korean two-pass model. The much bigger improve-
ment in the case of Korean model is probably due to the larger
variability in data compared to Librispeech data. UIT training
of the two-pass ASR architecture also had a positive impact on
the streaming MoChA model performance as well.
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