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Abstract
This paper describes a simple and efficient pre-training method
using a large number of external texts to enhance end-to-end au-
tomatic speech recognition (ASR). Generally, it is essential to
prepare speech-to-text paired data to construct end-to-end ASR
models, but it is difficult to collect a large amount of such data
in practice. One issue caused by data scarcity is that the per-
formance of ASR on out-of-domain tasks different from those
using the speech-to-text paired data is poor, since the mapping
from the speech information to textual information is not well
learned. To address this problem, we leverage a large number of
phoneme-to-grapheme (P2G) paired data, which can be easily
created from external texts and a rich pronunciation dictionary.
The P2G conversion and end-to-end ASR are regarded as simi-
lar transformation tasks where the input phonetic information is
converted into textual information. Our method utilizes the P2G
conversion task for pre-training of a decoder network in Trans-
former encoder-decoder based end-to-end ASR. Experiments
using 4 billion tokens of Web text demonstrates that the per-
formance of ASR on out-of-domain tasks can be significantly
improved by our pre-training.
Index Terms: end-to-end automatic speech recognition,
phoneme-to-grapheme conversion, pre-training, Transformer

1. Introduction
End-to-end automatic speech recognition (ASR) systems that
directly convert input speech into text is one of the most at-
tractive technologies in speech-related fields. Although conven-
tional hybrid ASR systems have individually optimized compo-
nent models, i.e., individual acoustic, pronunciation, and lan-
guage models, end-to-end ASR systems can achieve total opti-
mization in an end-to-end manner. In fact, the reported end-to-
end ASR systems have achieved competitive recognition per-
formance in various ASR tasks.

As ways of achieving much higher ASR performance, sev-
eral modeling methods have been developed in the last few
years. The initial studies mainly utilized connectionist tem-
poral classification [1, 2] and recurrent neural network (RNN)
encoder-decoder [3–6] for the end-to-end ASR. In addition, re-
cent studies have employed the transformer encoder-decoder,
which has shown much stronger performance [7, 8].

While end-to-end ASR systems achieve total optimization,
one weakness is that speech-to-text paired data are essential for
optimization. In fact, it is difficult to collect a large number of
such data in practice. To deal with this problem, several stud-
ies have developed methods that utilize unpaired speech data
and unpaired text data in semi-supervised learning and in self-
supervised pre-training (see Sec. 2). The unpaired text data are
usually used for language model (LM) fusion [9, 10]. Unfortu-
nately, the LM fusion approach is not effective to improve ASR

performance of out-of-domain tasks which are different from
those using speech-to-text paired data because LM fusion can-
not learn the mapping from the speech information to the textual
information. In addition, LM fusion cannot solve the out-of-
vocabulary problem; i.e., tokens that do not appear in the paired
data cannot be recognized. To tackle these problems, previous
studies have utilized text-to-speech models to create speech-
to-text paired data from unpaired text data [11–13]. However,
these methods are strongly affected by the performance of the
text-to-speech models. In fact, we cannot generate appropri-
ate speech data from text data in unseen linguistic contexts if
we construct the text-to-speech part from a limited amount of
speech-to-text paired data.

Our idea is to leverage a large number of phoneme-to-
grapheme (P2G) paired data, which can be created from exter-
nal text data and a rich pronunciation dictionary, for enhancing
end-to-end ASR modeling. The P2G conversion and end-to-
end ASR are regarded as similar transformation tasks, where
input phonetic information is converted into textual informa-
tion. Thus, it can be considered that a decoder network can
be shared between the P2G conversion and end-to-end ASR.
Different from utilizing text-to-speech models, the input pho-
netic information is reliable, since it is created by looking it
up in the pronunciation dictionary. In fact, a similar idea that
utilizes subword-to-word paired data has been used to improve
end-to-end ASR performance [14]. However, previous studies
have used only a small amount of unpaired text data and the
effect of using large-scale unpaired text data such as Web data
remains unknown. In addition, it has not been verified that the
P2G paired data can improve end-to-end ASR even in modern
modelings such as Transformer.

In this paper, we propose to use a P2G-conversion-based
pre-training with large-scale unpaired text data to enhance
the Transformer encoder-decoder based end-to-end ASR. In
our method, we first construct a Transformer encoder-decoder
based P2G conversion model by using unpaired text data. Next,
we transfer the trained decoder network to the Transformer
encoder-decoder based end-to-end ASR model and fine-tune
it by using speech-to-text paired data. In our experiments on
Japanese spontaneous ASR tasks, we used 4 billion tokens of
external text collected from the Web. We demonstrate that the
P2G-conversion-based large-scale pre-training significantly im-
prove the performance of ASR on out-of-domain tasks. In ad-
dition, we verify the relationship between our method and LM
shallow fusion.

2. Related Work
Semi-supervised learning: This study is related to semi-
supervised learning for end-to-end ASR. In semi-supervised
learning, speech-to-text paired data, unpaired speech data, and
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unpaired text data are jointly used for optimizing end-to-end
ASR models. The dominant approaches use speech chain mod-
eling [15], reconstruction modeling [16–18], consistency train-
ing [19] and self-training [20, 21]. In these methods, unlabeled
text data are usually used for text-to-speech modeling, so they
are not suitable for improving the performance of ASR in out-
of-domain tasks. In this study, we utilize unpaired text data
and devise a method that allows the text data to be converted
into phoneme-to-grapheme paired data by using a pronuncia-
tion dictionary.
Self-supervised pre-training: Our method is motivated by the
self-supervised pre-training for encoder-decoder-based mod-
els. In end-to-end ASR, self-supervised pre-training has been
mainly examined for encoder networks that convert input
speech into hidden representations [22–24]. On the other hand,
self-supervised pre-training for decoder networks has not been
examined in the context of end-to-end ASR. In recent natural
language processing, encoder-decoder-based models for text-
to-text conversion tasks have been pre-trained using unpaired
text data in a self-supervised manner. Their self-supervision
tasks are made by masking parts of the tokens and rearranging
tokens [25, 26]. Our method is regarded as a self-supervised
learning that defines the self-supervision task by utilizing the
pronunciation dictionary.

3. Proposed Method
We examine P2G-based pre-training to enhance end-to-end
ASR models. Here, we can use both speech-to-text paired data
D1 = {(X1,W 1), · · · , (XT , W T )} and unpaired text data
D2 = {W T+1, · · · ,W T+C}. In this study, we convert the un-
paired text data into P2G paired data D2 = {(QT+1,W T+1),
· · · , (QT+C ,W T+C)} by using a pronunciation dictionary.
Our objective is to train the model parameter of the end-to-end
ASR model from these two data sets. We define a P2G conver-
sion model and an end-to-end ASR model by using the Trans-
former encoder-decoder, which is a conditional auto-regressive
model. Our main idea is to transfer the decoder network in the
P2G conversion model to the end-to-end ASR.

3.1. Phoneme-to-Grapheme Conversion

Our phoneme-to-grapheme conversion predicts the generation
probability of a grapheme sequence (a token sequence) W =
{w1, · · · , wN} given a phoneme sequence Q = {q1, · · · , qL},
where wn is the n-th token in the grapheme sequence and ql is
the l-th phoneme in the phoneme sequence. In the conditional
auto-regressive models, the generation probability of W is de-
fined as

P (W |Q;Θp2g) =

N∏
n=1

P (wn|W1:n−1,Q;Θp2g), (1)

where Θp2g = {θpenc,θdec} represents the trainable model
parameter sets and W1:n−1 = {w1, · · · , wn−1}. In our
Transformer encoder-decoder based P2G conversion model,
P (wn|W1:n−1 Q; Θp2g) is computed using a phoneme en-
coder and a text decoder.

3.2. End-to-End ASR

Our end-to-end ASR is modeled by conditional auto-regressive
modeling. We predict the generation probability of a token
sequence W = {w1, · · · , wN} given input speech X =
{x1, · · · ,xM}, where xm is the m-th acoustic feature in the

speech. In the conditional auto-regressive models, the genera-
tion probability of W is defined as

P (W |X;Θasr) =

N∏
n=1

P (wn|W1:n−1,X;Θasr), (2)

where Θasr = {θsenc,θdec} represents the trainable model pa-
rameter sets. In our Transformer encoder-decoder based end-to-
end ASR model, P (wn|W1:n−1 Q; Θp2g) is computed using
a speech encoder and a text decoder. Note that θdec is the same
one as in Eq. (1). Thus, we use a sharable text decoder between
the end-to-end ASR model and the P2G conversion model.

3.3. Transformer encoder-decoder based modeling

The P2G conversion model and the end-to-end ASR model are
fully formed from Transformer encoder-decoder networks.

Phoneme encoder: The phoneme encoder converts a input
phoneme sequence Q into hidden representations S(K) by us-
ing K Transformer encoder blocks. The k-th Transformer en-
coder block composes the k-th hidden representations S(k)

from the lower layer inputs S(k−1), as

S(k) = TransformerEncoderBlock(S(k−1);θpenc), (3)

where TransformerEncoderBlock() is a Transformer en-
coder block that consists of a scaled dot product multi-head self-
attention layer and a position-wise feed-forward network [7].
The hidden representations S(0) = {s(0)

1 , · · · , s(0)
L } are pro-

duced by

s
(0)
l = AddPositionalEncoding(ql), (4)

ql = Embedding(ql;θpenc), (5)

where AddPositionalEncoding() is a function that adds a
continuous vector in which position information is embedded.
Embedding() is a linear layer that embeds the input token in a
continuous vector.

Speech encoder: The speech encoder converts the input acous-
tic features X into hidden representations H(I) by using I
Transformer encoder blocks. The i-th Transformer encoder
block composes the i-th hidden representations H(i) from the
lower layer inputs H(i−1), as

H(i) = TransformerEncoderBlock(H(i−1);θsenc), (6)

The hidden representations H(0) = {h(0)
1 , · · · ,h(0)

M′} are pro-
duced by

h
(0)

m′ = AddPostionalEncoding(hm′), (7)

{h1, · · · ,hM′} = ConvPool(x1, · · · ,xM ;θsenc), (8)

where ConvPool() is a function composed of convolution lay-
ers and pooling layers. M ′ is the subsampled sequence length
depending on the function.

Sharable text decoder: The text decoder computes the gen-
erative probability of a token from the preceding tokens and
the hidden representations of the phoneme information or the
speech. The predicted probabilities of the n-th token wn are
calculated as

P (wn|W1:n−1,O) = Softmax(u
(J)
n−1;θdec), (9)
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Figure 1: Training procedure of our method.

O =

{
Q if input is phoneme
X if input is speech,

(10)

where Softmax() is a softmax layer with a linear transforma-
tion. The input hidden vector u(J)

n−1 is computed from J Trans-
former decoder blocks. The j-th Transformer decoder block
composes the j-th hidden representation u

(j)
n−1 from the lower

layer inputs U (j−1)
1:n−1 = {u(j−1)

1 , · · · ,u(j−1)
n−1 }, as

u
(j)
n−1 = TransformerDecoderBlock(U

(j−1)
1:n−1,Z;θdec),

(11)

Z =

{
S(K) if input is phoneme
H(I) if input is speech,

(12)

where TransformerDecoderBlock() is a Transformer de-
coder block that consists of a scaled dot product multi-
head masked self-attention layer, a scaled dot product multi-
head source-target attention layer, and a position-wise feed-
forward network [7]. The hidden representations U

(0)
1:n−1 =

{u(0)
1 , · · · ,u(0)

n−1} are produced by

u
(0)
n−1 = AddPositionalEncoding(wn−1), (13)

wn−1 = Embedding(wn−1;θdec). (14)
As mentioned above, the text decoder is sharable between the
P2G conversion model and the end-to-end ASR model.

3.4. Pre-Training and Fine-Tuning

In this study, these networks are trained in two stages by using
the speech-to-text paired data D1 = {(X1,W 1), · · · , (XT ,
W T )} and the P2G paired data D2 = {(QT+1,W T+1), · · · ,
(QT+C ,W T+C)}. Figure 1 shows the training procedure of
our method. In the first stage, we train the P2G conversion
model with the P2G paired data. The model parameters for the
P2G conversion model are optimized by

θ̂penc, θ̂dec = − argmin
θpenc,θdec

C∑
c=1

NT+c∑
n=1

logP (wT+c
n |W T+c

1:n−1,Q
T+c;θpenc,θdec), (15)

where wT+c
n is the n-th token for W T+c and W t

1:n−1 =
{wt

1, · · · , wt
n−1}. NT+c is the number of tokens in W T+c.

In the second stage, we transfer the trained decoder param-
eter θ̂dec to that for the end-to-end ASR model and fine-tune
the end-to-end ASR model by using the speech-to-text paired
data. The model parameters for the end-to-end ASR model are
optimized by

θ̂senc,
ˆ̂
θdec = − argmin

θsenc,θdec

T∑
t=1

Nt∑
n=1

logP (wt
n|W t

1:n−1,X
t;θsenc,θdec), (16)

Table 1: Speech-to-text paired data sets.

Domain Data size Number of
(Hours) characters

Train 1 CSJ-A 252.5 6,747,386
Train 2 CSJ-S 263.1 6,679,489
Test 1 CSJ-A 1.8 48,064
Test 2 CSJ-A 1.9 47,970
Test 3 CSJ-S 1.3 32,089
Test 4 CCDC 3.5 65,843
Test 5 CJLC 4.1 84,641

where ˆ̂
θdec is the fine-tuned decoder parameter after the pre-

training. In addition, we examine the fine-tuning while freezing
the trained decoder parameter.

4. Experiments
Our experiments used three Japanese ASR corpora. One is the
Corpus of Spontaneous Japanese (CSJ) [27], which includes
two training data sets (Train 1 and 2) and three test data sets
(Test 1, 2 and 3). Train 1, Test 1 and 2 are academic presen-
tation speech (CSJ-A). Train 2 and Test 3 are simulated pub-
lic speech (CSJ-S). The other two corpora are our home-made
Japanese contact center dialogue corpus (CCDC) and the cor-
pus Japanese classroom lecture speech contents (CJLC), each
of which were used for only testing in the out-of-domain tasks.
We denote the CCDC as Test 4, and the CJLC as Test 5. Details
of the data sets are shown in Table 1. Note that this paper uses
characters as the tokens. We assessed the following two ASR
setups.

• Setting A: Training data are drawn from Train 1. Thus,
Test 1 and 2 are in-domain tasks and Test 3, 4 and 5 are
out-of-domain tasks.

• Setting B: Training data are drawn from Train 1 and 2.
Thus, Test 1, 2 and 3 are in-domain tasks and Test 4 and
5 are out-of-domain tasks.

In addition, we prepared large-scale Japanese Web text as
unpaired text data. The Web text was downloaded from various
topic Web pages by using our home-made crawler. The down-
loaded pages were filtered for excluding HTML tags, Javascript
codes and other parts that were not useful for the ASR mod-
eling. As a result, about 0.2 billion sentences with 4 billion
characters were prepared. The Japanese Web text was used for
both P2G-conversion-based pre-training and language model-
ing for LM fusion. For the experiments, we created subsets of
the collected Web data. We randomly sampled sentences from
the full data and composed 0.4 billion and 0.04 billon tokens of
subsets. To perform the P2G-conversion-based pre-training, we
converted all Web data into phoneme sequences by using our
home-made morphological analyzer with a rich Japanese pro-
nunciation dictionary.

4.1. Setups

In our experiments, we modeled both the P2G conversion mod-
els and end-to-end ASR models using Transformer encoder-
decoders. For the P2G conversion models and the end-to-end
ASR models, the Transformer blocks were composed under the
following conditions: the dimensions of the output continuous
representations were set to 256, the dimensions of the inner
outputs in the position-wise feed forward networks were set to
2,048, and the number of heads in the multi-head attentions was
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Table 2: Experimental results in terms of character error rate (%). ID means in-domain and OOD means out-of-domain.
Language model P2G-based Decoder Data size of
shallow fusion pre-training freezing external text Test 1 Test 2 Test 3 Test 4 Test 5

Setting A ID ID OOD OOD OOD
Baseline - - - - 9.8 7.9 16.1 32.6 27.1
Baseline + LM ✓ - - 4 billion 9.6 7.7 15.5 32.2 26.7
Our method - ✓ freeze 0.04 billion 12.3 8.7 16.3 33.4 28.4
Our method - ✓ unfreeze 0.04 billion 9.6 7.5 14.3 31.3 26.1
Our method - ✓ freeze 0.4 billion 11.2 7.9 14.7 29.1 26.7
Our method - ✓ unfreeze 0.4 billion 9.5 7.3 13.7 29.5 26.2
Our method - ✓ freeze 4 billion 10.7 7.6 14.1 28.8 26.2
Our method - ✓ unfreeze 4 billion 9.2 7.0 13.3 28.4 25.0
Our method + LM ✓ ✓ unfreeze 4 billion 9.0 6.8 12.9 28.0 24.6
Setting B ID ID ID OOD OOD
Baseline - - - - 6.8 5.0 6.0 26.5 23.8
Baseline + LM ✓ - - 4 billion 6.7 4.9 5.8 26.2 23.5
Our method - ✓ freeze 0.04 billion 10.4 7.8 7.5 25.9 25.9
Our method - ✓ unfreeze 0.04 billion 6.7 4.9 5.9 25.3 23.1
Our method - ✓ freeze 0.4 billion 9.5 7.3 7.0 25.3 25.9
Our method - ✓ unfreeze 0.4 billion 6.6 4.7 5.6 24.3 22.8
Our method - ✓ freeze 4 billion 8.5 5.8 6.4 24.6 25.4
Our method - ✓ unfreeze 4 billion 6.5 4.4 5.4 23.9 22.4
Our method + LM ✓ ✓ unfreeze 4 billion 6.4 4.3 5.3 23.5 22.0

set to 4. In the nonlinear transformational functions, the GELU
activation was used. For the speech encoder, we used 40 log
mel-scale filterbank coefficients appended with delta and accel-
eration coefficients as acoustic features. The frame shift was
10 ms. The acoustic features passed two convolution and max
pooling layers with a stride of 2, so we down-sampled them to
1/4 along with the time axis. After these layers, we stacked 8-
layer transformer encoder blocks. For the phoneme encoder, we
used 256-dimensional phoneme embeddings where the vocabu-
lary size was set to 86. We stacked 4-layer transformer encoder
blocks. In the text decoder, we used 256-dimensional character
embeddings where the vocabulary size was set to 5,777.

For the training, we used the Radam optimizer [28]. The
training steps were stopped based on early stopping using part
of the training data. We set the mini-batch size to 64 sen-
tences/utterances and the dropout rate in the Transformer blocks
to 0.1. In addition, for optimizing the P2G conversion mod-
els and end-to-end ASR models, we introduced label smooth-
ing [29] and scheduled sampling [30]. For the label smoothing,
a smoothing parameter was set as 0.1. Our scheduled sampling-
based optimization process used the teacher forcing at the be-
ginning of the training steps, and we linearly ramped up the
probability of sampling to the specified probability at the spec-
ified epoch. Furthermore, for optimizing the end-to-end ASR
models, we used SpecAugment [31]. Our SpecAugment only
applied frequency masking and time masking, where the num-
ber of frequency masks and time step masks were set to 2, the
frequency masking width was randomly chosen from 0 to 20
frequency bins, and the time masking width was randomly cho-
sen from 0 to 100 frames. When we examined fine-tuning based
on the P2G-conversion-based pre-training, we evaluated two se-
tups: decoder-freezing and decoder-unfreezing transfers. For
testing, we used a beam search algorithm in which the beam
size was set to 20. In addition, to compare the P2G-conversion-
based pre-training with other methods using unpaired text, we
examined log-linear interpolation LM shallow fusion [9,10] us-
ing a two-layer LSTM-based LM trained from all the Web data.
The number of units in each LSTM was set to 512. The weight
factor for the log-linear interpolation was set to 0.1.

4.2. Results

Table 2 shows the results in terms of character error rate for
settings A and B. The baseline represents results that only used
the speech-to-text data, while the other results used both the
speech-to-text data and the unpaired text data. First, the re-
sults show freezing the trained decoder parameter in the fine-
tuning achieved moderate ASR performance. This indicates
that the decoder network trained via the P2G conversion model-
ing matches the end-to-end ASR even though its source-target
attention mechanism is trained so as to handle phoneme se-
quences. Next, the results show that our methods with unfreez-
ing of the decoder network had better ASR performance than
the baseline on each test set. In particular, our approach signif-
icantly improved ASR performance on the out-of-domain test
sets. This suggests that the pre-training using large-scale Web
text is effective for learning unknown mappings from input pho-
netic information to textual information. The results also show
the effectiveness of increasing the amount of unpaired text data.
Furthermore, our methods significantly outperformed the LM
fusion approach even when we used the same unpaired text data.
This is because our methods can directly capture the mapping
from the input phonetic information to textual information. The
highest results were attained by combining the P2G-conversion-
based pre-training with LM shallow fusion. These confirm that
our pre-training method can yield effective performance im-
provements even when combining with LM shallow fusion.

5. Conclusions
We presented a phoneme-to-grapheme conversion based large-
scale pre-training to improve end-to-end ASR systems. The
strength of our method is that it learns an unknown mapping
from phonetic information to textual information by utilizing
large-scale Web text. Our experiments using 4 billion to-
kens of Web text demonstrated that ASR performance on the
out-of-domain tasks can be significantly improved by using
P2G-conversion-based large-scale pre-training. In addition, we
showed that our method can yield performance improvements
even when combining with LM shallow fusion.
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