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Abstract
The speech recognition training data corresponding to digital
voice assistants is dominated by wake-words. Training end-
to-end (E2E) speech recognition models without careful atten-
tion to such data results in sub-optimal performance as mod-
els prioritize learning wake-words. To address this problem,
we propose a novel discriminative initialization strategy by in-
troducing a regularization term to penalize model for incor-
rectly hallucinating wake-words in early phases of training. We
also explore other training strategies such as multi-task learning
with listen-attend-spell (LAS), label smoothing via probabilis-
tic modelling of silence and use of multiple pronunciations, and
show how they can be combined with the proposed initialization
technique. In addition, we show the connection between cost
function of proposed discriminative initialization technique and
minimum word error rate (MWER) criterion. We evaluate our
methods on two E2E ASR systems, a phone-based system and a
word-piece based system, trained on 6500 hours of Alexa’s In-
dian English speech corpus. We show that proposed techniques
yield 20% word error rate reductions for phone based system
and 6% for word-piece based system compared to correspond-
ing baselines trained on the same data.
Index Terms: acoustics-to-word, automatic speech recogni-
tion, connectionist temporal classification, end-to-end, initial-
ization, voice assistant

1. Introduction
Recently, many studies have focused on end-to-end (E2E) au-
tomatic speech recognition (ASR) technology, which directly
converts audio to sequence of words. These systems offer great
simplification as they overcome complexities associated with
maintaining a traditional hybrid ASR technology. In litera-
ture, the work on E2E technology utilizes connectionist tem-
poral classification (CTC) framework (includes recurrent neu-
ral network transducer) [1–7], attention based encoder-decoder
architecture [8–10], or both [11, 12]. Among these, CTC in-
troduces an additional blank label to learn intermediate frame-
level alignments between audio and output labels. The ability
of models trained with CTC objective to provide frame syn-
chronous predictions make them suitable for streaming applica-
tions, such as digital voice assistants [13].

Note that unidirectional long short term memory (LSTM)
networks trained with CTC objective require careful initializa-
tion and training to achieve good accuracies [4, 14, 15]. Other-
wise, networks may fail to find a good local optima. A num-
ber of initialization and training strategies have been proposed.
Most of the initialization techniques focus on training an in-
termediate model. For hybrid ASR systems, this intermedi-
ate model is typically a cross entropy trained model with con-
text dependent phones as units [14, 16] whereas for CTC based
acoustics-to-word systems, initialization from the phone based

system has been found to be useful [4]. Apart from initialization
techniques, studies in [6,15,17–19] explore hierarchical training
and curriculum learning to stabilize training with unidirectional
networks. In [15,20], authors demonstrate joint training of CTC
models with frame-wise cross-entropy loss also provides signif-
icant improvements.

Training end-to-end ASR for voice assistants poses further
challenges. This is mainly because of frequent occurrences of
wake-words (such as “alexa”, “okay google”, “siri”), usually at
the start of utterances, in training data owing to typical com-
mand/response interaction mode. Since unidirectional LSTM
network with CTC prioritizes learning simple patterns in the
data [21], it learns only wake-word during initial phase of train-
ing, which leads to sub-optimal results. To the best of our
knowledge, this problem has not been addressed for building an
accurate end-to-end ASR system. Although bootstrapping from
a well-trained cross-entropy model may mitigate this issue, it is
cumbersome to maintain a traditional cross-entropy hybrid sys-
tem (i.e. frame-level alignments, force alignment model, state
tying decision trees etc.).

In this work, we systematically investigate this issue for
CTC based end-to-end speech recognition systems. This pa-
per proposes a novel discriminative training strategy to penalize
overconfident hallucinations of wake-words during initial phase
of training by introducing a new regularization term. We also
establish its connection to minimum word error rate (MWER)
training. To improve the system further, we also explore vari-
ous training strategies that can be interpreted as variants of reg-
ularization: (i) Label smoothing via probabilistic modelling of
silence and use of multiple pronunciations (ii) Multi-task learn-
ing with listen-attend-spell (LAS). We evaluate two CTC based
end-to-end frameworks, acoustics-to-word (A2W) and phone
based systems, on Alexa’s Indian English data. For A2W sys-
tem, we directly model words (and sub-words) whereas for
phone based system, we model phones and use pronunciation
lexicon and language model for evaluation. We refer to our
phone based system as E2E (similar to [22]) because we do not
make use of any previously trained models, forced alignments,
or build state-tying decision trees.

2. Focusing on wake-word: Not the ideal
way to start learning

Deep networks have been shown to prioritize learning simple
patterns in the data [21]. For a voice assistants dataset, due to
presence of wake-word in many of the utterances, the network
could learn to focus on wake-word. In this section, we em-
pirically explore learning prioritization by network and discuss
why learning wake-word at the start of training may not be the
optimal strategy.

In order to understand the learning prioritization, we carry
out a couple of experiments with both phone based and
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acoustics-to-word (A2W) system (system details mentioned
later in section 4.1): (i) Uniform sampling: In the first experi-
ment, to train our model, we uniformly sample the training data
and thereby end up using natural distribution of data (ii) In the
second experiment, we use a well known curriculum learning
strategy - sortaGrad [4,6,19] which sorts the utterance based on
length. With the use of sortaGrad, we expect a lot of utterances
containing only wake-word to be sampled first.

Unit Sampling strategy WERR (%)

Phone Uniform 0
sortaGrad - 8.27

A2W Uniform 0
sortaGrad - 6.50

Table 1: Comparison of phone based and A2W system trained using
uniform sampling (Uniform) and sortaGrad. Negative relative word er-
ror rate (WERR) indicates degradation over uniform sampling baseline.

We make two important observations: (i) The results in Ta-
ble 1 shows that sortaGrad is significantly worse (6-8% rela-
tive) than uniform sampling for both the systems. This is in
stark contrast to what has been reported in literature [4, 6] (ii)
On looking at the training progress of models trained with uni-
form sampling and sortaGrad, we found that the model trained
with sortaGrad hallucinates wake-word ‘Alexa’ (i.e. its exact
phone sequence or its representation as single word-piece) for
first 6k steps whereas model trained with uniform sampling hal-
lucinates ‘Alexa’ for first 2.5k steps before gradually learning
new words. This shows that model indeed starts learning by fo-
cusing on most common word in the dataset, which for our case
is wake-word ‘Alexa’. Both the observations when combined
together tell us that by focusing on learning wake-word for a
longer time, the performance degrades. In other words, lesser
focus on learning wake-word initially may lead to significant
improvements in performance.

3. Improved training of E2E systems
3.1. Discriminative initialization

In section 2, we found that the network starts learning by re-
membering wake-word. Based on this observation, we propose
a new initialization technique to explicitly penalize the network
for incorrectly hallucinating wake-word during training. We
formulate it within the framework of multi-task learning as min-
imization of following:

L(X,Y ) = Lctc(X,Y )− λ ∗ Lctc(X,Y = ww) (1)

where λ is a hyper-parameter to control contribution of var-
ious terms and is set to 0 for utterances that contain wake-word.
Lctc(X,Y ) is CTC loss for label sequence corresponding to
word sequence Y and acoustic features X and Lctc(X,Y =
ww) is CTC loss assuming label sequence corresponding to
wake-word ww. Here, additional penalty term Lctc(X,Y =
ww) acts as regularizer for the network and can be thought of as
regularization via network architecture [23]. We use the above
formulation only in the initial stages of training and then use
the usual CTC loss formulation. We refer to this technique as
discriminative initialization (DI).

Minimization of the loss can then be interpreted as (using
Lctc(X,Y ) = −lnP (Y/X)):

max(lnP (Y/X)− λ ∗ lnP (Y = ww/X)) (2)

As seen from the equation 2, we now try to maximize the
likelihood of correct sequence and minimize the likelihood of
predicting wake-word ww, thus adding an explicit penalty for
incorrectly hallucinating it. We apply this formulation only to
utterances which don’t contain wake-word ww in transcription
and use the usual CTC loss formulation minLctc(X,Y ) for
utterances containing wake-word ww. This ensures we don’t
penalize the correct predictions of wake-word but only incorrect
hallucinations. Although this technique is proposed for wake-
words, any other word can be substituted for it. It can also be
easily adapted for any number of words by summing over them
to compute the additional loss term.

3.1.1. Relation of discriminative initialization with minimum
word error rate training

MWER training criteria is a discriminative training criteria to
minimize the expected number of word errors over all possible
hypothesis [24] [25]. It is formulated as minimization of fol-
lowing:

Lmwer(X,Y ) = E[W (Y, Y ′)] =
∑
Y ′

P (Y ′/X)W (Y, Y ′)

(3)
where W (Y, Y ′) is the WER between transcription Y and hy-
pothesis Y ′. However, computation of above loss is intractable
as it involves summation over all possible label sequences.
Hence the loss is approximated by limiting the summation over
N-best list.

Typically, for E2E systems, MWER loss is added as an ex-
tra term in addition to the task specific loss (e.g. cross-entropy
for LAS) [25] [26]. For our case, this becomes:

min(Lctc(X,Y ) + λ ∗ Lmwer(X,Y ))

= min(−lnP (Y/X) + λ ∗
N∑
i=1

P (Y ′
i /X)W (Y, Y ′

i ))
(4)

Assuming that the probability mass (in N-best list) is con-
centrated over one recognition hypothesis ww (say ‘Alexa’,
which holds in initial part of training as mentioned in section
2), the equation becomes:

min(−lnP (Y/X) + λ ∗ P (Y ′
1 = ww/X) ∗W (Y, Y ′

1 = ww))

= max(lnP (Y/X)− λ ∗ P (Y ′
1 = ww/X) ∗W (Y, Y ′

1 = ww))
(5)

From equations 5 and 2, it is clear that both the formula-
tions are identical except for unequal weighing of examples by
constant factor W (Y, Y ′

1 = ww) in case of MWER training.
Note that the presence of monotonically increasing ln function
in equation 2 doesn’t affect optimization. Hence the proposed
initialization technique can be considered as a special case of
jointly minimizing CTC and MWER loss. Though, for MWER
training one starts from a well trained model whereas we pro-
pose to start training with this formulation. With this formula-
tion in place, we expect to mitigate the problem arising out of
over representation of wake-word.

3.2. Multi-task learning with listen-attend-spell

Joint CTC-Attention based architectures have been proposed
[11,12] to improve the alignment mechanism of attention based
systems. For such joint systems, encoder is typically shared be-
tween the two and CTC is considered as an auxiliary task. These
joint systems have been found to perform better than both the
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systems individually but a major drawback of such systems is
their reliance on attention based decoding and hence inapplica-
bility to streaming recognition tasks. Note that attention based
systems are also referred as LAS in literature and we use the
two terms interchangeably.

We explored the simplest possible modification of joint
CTC-Attention based system to make it suitable for stream-
ing tasks. Instead of using attention based decoder and bidi-
rectional network for encoder, we considered LAS as an auxil-
iary task, discarded the attend and spell networks of LAS after
jointly training the network and used unidirectional network in
encoder. At run time, we obtained frame synchronous encoder
representation and used them for decoding similar to any other
CTC system. A similar system capable of streaming recognition
has been recently proposed in [27] where they have developed
a CTC-triggered attention decoder.

The formulation incorporating both the CTC loss and cross-
entropy of from LAS can be established within the framework
of multi-task learning as:

LMTL(X,Y ) = (1− α) ∗ Lctc(X,Y ) + α ∗ Llas(X,Y )
(6)

Recently, it was empirically shown that LAS system
achieves best performance with word-piece units [10]. Hence,
in order to reap maximum benefit out of the auxiliary LAS task,
we keep the auxiliary units fixed as word-pieces. For our phone
based system, this meant use of two very different units for pri-
mary and auxiliary task. To the best of our knowledge, this is the
first study on streaming recognition system, employing LAS as
an auxiliary task and exploiting the complementary information
of different unit types. By virtue of multi-tasking, this technique
can also be considered as a form of regularization via network
architecture [23].

3.3. Label smoothing via probabilistic modelling of silence
and use of multiple pronunciation

Label smoothing was proposed as a regularization technique to
improve generalization [28,29]. It proposes to penalize low en-
tropy output distribution by adding noise to the labels [19, 28].
In this work, we introduce a simple yet powerful technique for
changing label distribution. To penalize over-confident pre-
dictions by network, while training we: (i) randomly use one
of the multiple pronunciations from the lexicon (as also done
in [10, 22]) (ii) randomly add silence label at start and end of
the label sequence and in between words. This has the effect of
changing label distribution for a fixed word sequence, thereby
providing the regularization effect. For this work, we use prob-
ability of 0.8 for inserting silence label at start and end and 0.2
for inserting a silence label between words.

4. Experiments and Results
4.1. Dataset and systems

We investigate the performance of various techniques using
Alexa’s Indian English data. The training dataset in our exper-
iments consists of 6500 hours of anonymized utterances. We
augment the dataset by adding a noisy and reverberated copy of
utterances. The dev and test used consists around 10 hours of
anonymized utterances each. We use 256 dimensional STFT
features [16] and employ a frame skipping approach where
three consecutive frames are stacked to obtain 768 dimensional
features.

We explored two different systems, depending on the out-
put units: (i) Word and word-pieces combination: We have a
total of 4000 classes, consisting of 3520 most frequent words
(e.g. ‘Alexa’, ‘play’, ‘stop’) in our dataset and 480 word-pieces.
Word-pieces are either single character or sub-words [30]. Any
word outside of top 3520 frequent word list is represented as
combination of these word-pieces. We call this as acoustics-
to-word (A2W) system [5] (ii) Phones: We have a total of 54
phones including a silence phone. To obtain label sequence
for training, unless stated otherwise, we convert transcription
to phone sequence using a fixed pronunciation from lexicon.

4.2. Network architecture, training and evaluation details

Architecture: We use FLSTM architecture [31], with 2 bidi-
rectional frequency LSTM layers and 5 unidirectional LSTM
layers. Frequency LSTM layers operate with a window size of
48 frames, hop size of 15 frames and have 16 units in one di-
rection whereas time LSTM layers have 768 units. We use the
same network architecture for baseline and across all our exper-
iments except for the setup of multi-task learning with LAS. In
that case, encoder is the same FLSTM architecture and decoder
has 2 unidirectional LSTM layers with 256 units each.
Training: We used synchronous distributed training on 16
GPUs with per GPU batch size of 128 and 64 utterances for
phone-based and A2W systems respectively. We use adam op-
timizer with a warmup-hold-decay learning rate (LR) schedule.
All the hyperparameters like LR, λ, α were individually tuned
for each of the system to obtain best performance on dev set.
Evaluation: For A2W system, we use CTC prefix search de-
coding [1] without the use of any pronunciation lexicon or lan-
guage model whereas for phone-based system we use pronunci-
ation lexicon and language model (LM) in a FST based frame-
work and rescore the N-best recognition list using RNN-LM.
We use standard relative word error rate (WERR) metric for
comparing various techniques throughout the paper. A positive
value of WERR indicates improvement over baseline whereas a
negative value indicates degradation.

4.3. Results with phone based system

We present results below using all the proposed techniques for
end-to-end phone based system. The baseline system doesn’t
use any of the proposed training strategies and is indicated as
having 0 WERR.

System Training strategy WERR (%)

Phone

- 0
DI (λ = 0.1) +11.50

MP +9.23
PS +10.00

LAS - WP (α = 0.5) +15.15

Table 2: Comparison of phone based system in terms of WERR for
various training strategies: (i) DI: discriminative initialization (ii) MP:
using multiple pronunciation (iii) PS: probabilistic modelling of silence
(iv) LAS - WP: multi-task learning with LAS using WP as units. Hyper-
parameters λ and α in brackets.

As seen from Table 2, DI improves relative WER of phone
based system by 11% on top of baseline with randomly initial-
ized parameters. For a phone based system, ‘Alexa’ is repre-
sented as a sequence of six phones. When observing the train-
ing progress, we found that because of DI it would now hypoth-
esize only partial phone sequence of ‘Alexa’ instead of mem-
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orizing the exact phone sequence (as observed earlier and ex-
plained in section 2). This shouldn’t come as a surprise be-
cause by simply dropping a couple of phones from the phone
sequence of ‘Alexa’, it could still minimize sequence probabil-
ity P (Y = ww/X) (here ww = Alexa) and hence achieve
the objective described by equation 2. In order to verify that
there was no negative effect of DI on recognition of ‘Alexa’,
we looked at the percentage of ‘Alexa’ errors (insertions, dele-
tions and substitutions) and found them to be similar with and
without the usage of DI. For experiments, we tuned value of λ
(equation 2) on dev set and found setting it to 0.1 for first 25k
training steps and 0 afterwards provided best performance.

It can also be seen from the above table, that each of
the proposed training strategy helps improve the performance
considerably. The gains obtained by introduction of multi-
task learning with LAS (+15.15%) indicate different unit types
(phones, word-pieces) provide complementary information to
the learner. Further, on observing training logs when using PS
and PS+MP, we saw: (i) instead of prioritizing learning ‘Alexa’,
the network focused on both ‘Alexa’ and silence (ii) instead of
predicting only one pronunciation of ‘Alexa’, it also starts pre-
dicting other pronunciations. This is indicative of regularization
effect introduced via label smoothing.

4.4. Results with acoustics-to-word system

In this section, we evaluate the efficacy of various techniques
on acoustics-to-word system. It is a much harder task since it
involves modelling words directly and may also suffer from data
sparsity issues [4].

Unit Training strategy WERR (%)

A2W

- 0
DI (λ = 0.2) +3.48

PS +3.84
LAS - WP (α = 0.3) +5.49

Table 3: Comparison of A2W system in terms of WERR for (i) DI: dis-
criminative initialization (ii) PS: probabilistic modelling of silence (ii)
LAS - WP: multi-task learning with LAS using WP as units. Hyperpa-
rameters λ and α in brackets.

For A2W system, 3520 most frequent words in the dataset
are represented as a single word-piece, one of which is ‘Alexa’.
For DI, this makes the task of regularization more challeng-
ing compared to phone based system where ‘Alexa’ is repre-
sented as sequence of six phones and it could minimize P (Y =
ww/X) by dropping a couple of phones (as explained in sec-
tion 4.3). This is also supported by the observation that we
needed to use higher λ (0.2) for A2W system. We believe
this inherent difficulty makes DI less effective for A2W sys-
tem compared with phone based system (Table 3 vs Table 2),
although still providing significant improvements (3.48%) over
baseline. All the other techniques like use of probabilistic si-
lence and multi-task learning with LAS seem to provide in-
tended regularization effect and individually provide gains of
4-5% over baseline which doesn’t incorporate these strategies.

4.5. Interaction of proposed discriminative initialization
and training strategies for phone-based system

We carry out this study only for phone based system. However,
the improvements obtained from combination of multiple train-
ing strategies are expected to hold for acoustics-to-word system.

For combining DI with other techniques, we first train the

network with loss described by equation 2 for 25k steps and
λ = 0.1 but without incorporating any of the techniques like
PS, MP. We then use it as an initialization for tasks incorporat-
ing various training strategies with usual CTC loss. For multi-
task learning with LAS, we only initialized encoder with dis-
criminatively trained network and then used the joint loss de-
scribed in equation 6.

No. Training strategy WERR (%) DI impact as
WERR(%)

1 - 0 +11.502 DI +11.50

3 PS +10.00 +7.074 PS + DI +17.07

5 PS + MP +13.07 +4.236 PS + MP + DI +17.30

7 PS + MP + LAS +17.69 +2.318 PS + MP + LAS + DI +20.00

Table 4: Performance of phone based system with combination of var-
ious training strategies. Last column quantifies the contribution of DI
in presence of other training strategies

From Table 4, comparing consecutive rows (1-2, 3-4, 5-6,
7-8 as shown in last column of Table 4) to assess the impact of
discriminative initialization, we see that: (i) we gain the most
(11.50%) by adding regularization via DI when there is no other
form of regularization present (row 1,2) (ii) although the bene-
fit of discriminative initialization reduces (+11.50%, +7.07%,
+4.23%, +2.31%) as other terms contribute to regularization
(from PS, PS+MP, PS+MP+LAS), it still provides significant
gains in combination with every other technique (iii) the gains
obtained from each of the techniques are complementary. This
is evident from the fact that by combining multiple techniques,
performance improves (+10.0, +13.07, +17.69) (rows 1,3,5,7).

5. Conclusions

The over representation of keyword in the dataset affects gen-
eralization of networks. We studied one such case of naturally
high presence of wake-word in the dataset of voice assistant. In
this work, we demonstrated the ill effects of training an end-
to-end speech recognition system without careful attention to
such data. To mitigate it, an initialization technique to penal-
ize model for incorrectly hallucinating keywords was proposed.
We showed that the proposed initialization has an effect of reg-
ularization and is effective against overconfident predictions of
such keywords. In addition, training strategies like multi-task
learning with listen-attend-spell and label smoothing via prob-
abilistic modelling of silence and multiple pronunciation were
explored to further improve the performance. We studied the ef-
ficacy of each of the proposed technique independently as well
as in combination and established that (i) each of the technique
independently provides significant word error rate reductions
(ii) gains from combination of multiple training strategies are
complementary. In future, we plan to leverage the proposed
techniques to improve other E2E architectures like recurrent
neural network transducer.
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