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Abstract
Recent developments in data augmentation has brought great
gains in improvement for automatic speech recognition (ASR).
Parallel developments in augmentation policy search in com-
puter vision domain has shown improvements in model per-
formance and robustness. In addition, recent developments in
semi-supervised learning has shown that consistency measures
are crucial for performance and robustness. In this work, we
demonstrate that combining augmentation policies with con-
sistency measures and model regularization can greatly im-
prove speech recognition performance. Using the Librispeech
task, we show: 1) symmetric consistency measures such as the
Jensen-Shannon Divergence provide 4% relative improvements
in ASR performance; 2) Augmented adversarial inputs using
Virtual Adversarial Noise (VAT) provides 12% relative win; and
3) random sampling from arbitrary combination of augmenta-
tion policies yields the best policy. These contributions result in
an overall reduction in Word Error Rate (WER) of 15% relative
on the Librispeech task presented in this paper.
Index Terms: speech recognition, CoDA, Augmentation Pol-
icy, RandAug, Jensen-Shannon

1. Introduction
Data augmentation is widely used for creating additional train-
ing data for machine learning systems, ranging from applica-
tions in computer vision[1, 2] to speech recognition[3, 4, 5, ?,
?]. Recent work with deep learning systems have show that data
augmentation can also greatly improve accuracy [6], robustness
[7, 8] and deliver substantial improvements to semi-supervised
learning framework[9, 10, 11]. A natural extension to naive
application of data augmentation is in the development and
search for optimal augmentation policies[6, 12, 13, 14]. This
line of work focuses on searching (either directly or through
some proxy task) for a set of augmentation schedules and sub-
parameters that gives great model performance across datasets
and model configurations. A contrastive learning framework to
decide on the choice of augmentations, with an additional learn-
able nonlinear transformation between the augmented represen-
tations and the contrastive loss was introduced in [15]. This
work on ImageNet, highlighted the importance of data aug-
mentation schemes for unsupervised/semi-supervised learning
methods. The empirical results from this line of work shows
that optimal augmentation policies can achieve better gains
than directly applying data augmentation methods. In auto-
matic speech recognition (ASR), recent augmentation methods
such as SpecAugment [16] have provided gains in performance
across a wide range of datasets and models. However, there
has not been much work in the literature on combining these

types of regularization and data augmentations schemes such
as multistyle training. In this work, we extend upon SpecAug-
ment and other augmentation techniques to see how they can be
composed and combined to give greater improvements in per-
formance for ASR.

This work also expands upon techniques from previous
work [17] that applies consistency regularization when incorpo-
rating Text-to-Speech (TTS) with ASR. In [17], consistent data
augmentation (CoDA) was applied to ensure ASR predictions
are consistent when presented with real and TTS synthesized
utterances. CoDA loss was crucial to make ASR model domain
agnostic, resulting in improved performance. In this work, we
explore a range of alternative consistency measures to stabilize
training and generalization based on augmented data especially
when augmentations are drawn from a diverse population of
techniques. In addition, we investigate a closely related model
regularization technique called Virtual Adversarial Training[18]
that adds adversarial noise on top of our augmented model in-
puts, and show that it provides complementary gains for model
performance. While there have been other applications of VAT
on speech tasks (e.g. [19, 20]), we believe this is the first use of
VAT in training a sequence model as in ASR.

The contributions of this paper are as follows:

• Novel application on combining augmentation policies
with consistency regularization on supervised training
for ASR

• We evaluate how to best compose different augmentation
policies

• Assessment of a variety of consistency measures help
improve model performance

• Demonstration of the value of adversarial model regu-
larization technique such as Virtual Adversarial Training
complement augmentation policies and consistency reg-
ularization

2. Related Work
2.1. Augmentation Strategies

In this Section, we present recent work on data augmenta-
tion policy search. It should be noted that much of the aug-
mentation policy search work has been centered around Im-
ageNet. In AutoAugment[6], a reinforcement learning (RL)
controller was trained to select the best augmentation policies
from performance metrics derived from a small proxy task.
Fast AutoAugment[12] replaces the RL policy search with a
method that directly searches for augmentation policies that
maximize the match between the distribution of augmented split
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and the distribution of another, unaugmented split, thus speed-
ing up policy search. In population based augmentation[13],
the augmentation policy search was replaced with population
based[21] policy search. RandAugment[14] improves upon
these methods by removing the need to search over the small
proxy, by instead uniform random sampling between a set of
strong and diverse augmentations. The results of RandAug-
ment suggest that the assuming that the set of augmentation can-
didates are similarly useful, the gains from learning a specific
policy are negligible compared to a random selection policy.

2.2. Consistency Regularization

Consistency regularization has been utilized effectively in semi-
supervised learning framework ([22, 23, 10]). Various consis-
tency measures enforce model predictions to be robust to small
perturbations in input. The motivation behind consistency regu-
larization is that small changes in the input should lead to small
changes in the output. This is then expanded to suggest that
a robust model should behave similarly in response to original
and augmented features.

In Unsupervised Data Augmentation (UDA) [10], unpaired
data x are passed through various augmentation methods to
obtain augmented unpaired data x̂. A KL-Divergence consis-
tency loss was then applied on the respective model predictions
pθ(y|x) and pθ(y|x̂) to ensure model predictions are consistent.

In FixMatch [11], consistency regularization and pseudo-
labelling were combined to improve upon previous semi-
supervised learning works. Weak augmentation was applied to
unpaired data to generate model predictions, which act as the
pseudo-label after sharpening. Strong augmentations such as
RandAugment was then applied and subsequent model predic-
tions are obtained and used to train via cross entropy loss on
labels generated from weak augmentations.

The above mentioned methods have been mostly applied
within a semi-supervised learning setup, where consistency
measures were applied on unpaired data. AugMix [8] is one
of few works that applies consistency measures on supervised
learning, by applying Jensen-Shannon Divergence loss along
with mixing augmentation policy. This work shares similarities
to AugMix in that we also apply augmentation policies and con-
sistency regularization in the fully supervised training domain
for ASR.

A closely related work in semi-supervised learning and
model regularization is Virtual Adversarial Training [18] (VAT).
In this work, model distributional smoothness was defined for a
given input data as the KL-divergence based robustness of the
model against local, adversarial perturbations around said data
point. VAT can be viewed from a model regularization perspec-
tive in that it helps models be robust to adversarial noise. It
can also be viewed as an additional data augmentation strategy
in that it adds local adversarial noise to model inputs without
requirement of labels.

3. SCADA: Stochastic, Consistent and
Adversarial Data Augmentation

In this section we describe model architectures, training details
and how we apply augmentation policies, and consistency mea-
sures including specifics of VAT training.

3.1. Model and Training Details

For all ASR experiments, we use listen-attend-spell (LAS)
model[24]. Specifically, the LAS encoder consists of 2 convo-
lutional layers of 32 filters with shape 3×1 and 2×2 stride, fol-
lowed by four bidirectional LSTM layers of 1024 units for each
direction. The LAS decoder consists of locally sensitive at-
tention followed by two unidirectional LSTM layers with 1024
units.

We use 80 dimension melspectrogram features with delta
and double-delta stacking. Targets are 16k Word Piece model
(WPM) subword vocab. Decoding is performed without any
second-pass rescoring. Training is performed using Adam[25]
for 200k steps. We use a warmup and exponential decay learn-
ing rate schedule with a maximum of 1e-3 and minimum of
1e-5.

3.2. Augmentation Methods

In this section we describe the augmentation methods used
within these experiments. These augmentations all are applied
on mel filterbank outputs rather than the waveform directly.

SpecAugment SpecAugment [16] is one of our core aug-
mentation methods. SpecAugment randomly applies time and
frequency masks to input melspectrograms. We use 2 SpecAug-
ment configurations in our experiments (SP1 and SP2), both
providing similar performance individually. SP1 uses 4 time
masks with a max masking ratio of 0.1, and 1 frequency mask
with a max of 15 bins. SP2 uses 6 time masks with a max
masking ratio of 0.1, and 3 frequency masks with a max of 15
bins. The size of the masked time and frequency bands are uni-
formly sampled between 0 and their max value. Note, while
[16] describes SpecAugment as including a time warping aug-
mentation, we don’t find any performance improvements from
including this, so omit it.

Low Pass Smoothing We apply low pass smoothing as
augmentation on melspectrogram. A 2-D isotropic gaussian
kernel is used, with mean value of 0 and uniform sampled stan-
dard deviation in the range of [0, 0.2]. The 2-D guassian ker-
nel is then convolved with melspectrogram with kernel of shape
5 × 5. Note that the stochasticity is introduced by sampling
standard deviation values instead of using a fixed constant.

Additive Scaled Guassian Noise We apply additive guas-
sian noise as augmentation on melspectrogram. We scale the
gaussian noise addition to the mean of melspectrogram values
with a specified noise-to-signal ratio (NSR) of 0.2. Stochastic-
ity is added by uniform sampling the NSR ratio in the range of
[0, 0.2].

3.3. Stochastic Augmentation Policies

RandAugment Policy Following [14], we create a stochastic
RandAugment policy RA(p1, p2..pk) that will uniformly sam-
ple between k different augmentations provided during every
call. We implement RandAugment as another augmentation
method as to allow for arbitrary composition and combination
of different augmentation policies. As an example, we can com-
pose two distinct RandAugment policies inside another Ran-
dAugment policy:

raug1 = RA(p1, p2, p3)

raug2 = RA(p4, p5)

raug3 = RA(raug1, raug2)

(1)

Augmentation Stacking Inspired by AugMix [8], we apply
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augmentation stacking in order to get more diverse augmenta-
tions with every frop call. Specifically, we apply augmentation
in a two stage stacking process.

In the first stage, we create A RandAugment policy RA-pre
that randomly samples between three distinct augmentations:
1) identity, 2): low pass and 3: scaled guassian noise. In the
second stage, we create a RandAugment policy RAspecaug that
randomly samples between 2 distinct and equally performant
SpecAugment configurations.

This construction allows us to stack these augmentations in
a sequential fashion. Given an input mel spectrogram x, we first
apply RA-pre, followed by RA-spec to obtain x̂.

3.4. Loss Definitions

For each data point (x, y), two separate data augmentations are
applied to the same batch of input data to obtain x1 and x2.
Given these pairs of inputs, we apply our model M and obtain
model hypothesises pθ(y|x1) and pθ(y|x2). We apply regular
cross entropy training with ground-truth labels y, and obtain our
supervised loss:

Jsup = Ex1,y∈Lpθ(y|x1) + Ex2,y∈Lpθ(y|x2) (2)

We also calculate consistency loss on the pair of model pre-
dictions, Lconsist(y∗1 , y∗2), where y∗1 and y∗2 are model hypoth-
esises with two different augmentation variants. Note that y∗

here can represent both ASR model encoder states as well as
decoder logits and include this as a regularization term on the
final loss.

3.5. Consistency Measures

In this section we describe the consistency measures applied
both on the ASR encoder and decoder side between two distinct
augmentations.

Encoder Consistency Encoder consistency ensures that
ASR encoder states are domain agnostic when seeing differ-
ent augmented inputs. Given two distinct augmented inputs x1

and x2, we obtain ASR encoder ouptuts as e1 and e2. We then
define encoder consistency loss:

Jenc = ||e1 − e2||2 (3)

Consistency Loss In previous work [17], we applied Con-
sistency Data Augmentation (CoDA) to ensure consistent ASR
predictions between ground-truth and TTS synthesized utter-
ances. In this work, both features are augmented versions of a
source mel-spectrogram. Since the augmentation does not rely
on the label y to modify x, this loss is equivalent to that used in
UDA [10]:

Juda = Ex∈UEx̂∼q(x̂|x)DKL(pθ(y|x)||pθ(y|x̂)) (4)

Despite KL divergence being asymmetric, it proved useful in
our previous work as it pushed TTS augmented ASR decoder
logits closer to ground-truth. In this work however, all aug-
mentations are equal, and equal weight should be applied to all
distinct augmentations.

Jensen Shannon Divergence To enforce smoother net-
work response and have a symmetric loss, we utilize the Jensen
Shannon Divergence (JS) between augmentations. Specifically,
given two augmented inputs x1 and x2 and their respective
model prediction posterior distributions p1 = pθ(y|x1) and

p2 = pθ(y|x2), we compute JS loss as:

M =
1

2
(p1 + p2)

JS(p1, p2) =
1

2
(KL[p1||M ] +KL[p2||M ])

(5)

Virtual Adversarial Noise Virtual Adversarial Training
(VAT) [18], computes adversarial noise radv on an input x to
obtain an adversarially augmented input x̂. radv is selected to
be a small change in the direction that would increase the loss of
the model most. The magnitude of the adversarial noise is a hy-
perparameter. We set the VAT vector norm length to 10.0 for all
experiments if not otherwise specified. The VAT regularization
loss is the divergence between the predictions

Jvat = DKL (p(y|x)||p(y|x+ radv)) . (6)

To apply VAT to sequential data, radv is a tensor of the same
size as x. The gradient is calculated with respect to teacher-
forced training to the target y to provide stability to the gradient
used in the generation of radv .

4. Results and Discussion
In this section we evaluate aspects of stochastic data augmenta-
tion policy selection (Section 4.1), consistency measures (Sec-
tion 4.2) and VAT regularization (Section 4.3). Finally, we com-
bine the most effective techniques (Section 4.4.)

4.1. Augmentation Policy Comparison

We compare a variety of stochastic augmentation policies.
Since SpecAugment provides substantial and consistent im-

provements, our baseline includes SP1 SpecAugment.
RA-Pre is RandAugment selecting between identity, Low

Pass and Scaled Gaussian Noise with equal rates. Prior to
SpecAugment.

RA-Spec describes a RandAugment process selecting from
SP1 and SP2. This replaces the use of SP1 in the baseline
model.

Table 1: Stochastic Augmentation Comparison

Description test-clean test-other

Baseline 4.70 15.40
Base + RA-Spec 4.60 13.75

Baseline + RA-Pre + RA-Spec 4.66 13.60

We find that stochastic augmentation policies can outper-
form the static parameterization of SpecAugment used in our
baseline model. We observe improvements from stochasti-
cally manipulating the magnitude of SpecAugment parameters.
This is particularly striking in the improvement to test-other.
SpecAugment (and RA-Spec) completely mask out time and
frequency bands from the input signal. When we combine this
with more traditional augmentation techniques as in RA-Pre,
we find some additional gains to test-other, but a modest regres-
sion on test-clean.

4.2. Importance of Consistency Measures

Here we compare consistency measures applied to the encoder
and decoder of the ASR model. Overall, we find that applying
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Table 2: Consistency Loss Comparison

Description test-clean test-other

Baseline 4.7 15.4
Baseline + RA-Pre + 2 Forward 4.8 15.0

Baseline + RA-Pre + Encoder L2 6.2 18.0
Baseline + RA-Pre + Decoder JS 5.0 14.8

a consistency loss between two different manipulations using
SpecAugment leads to substantial WER reduction.

Results of these experiments can be found in Table 2,
each consistency measure is applied after RA-Pre with the SP1
SpecAugment configuration on each input. We find that mea-
suring consistency of the model’s outputs (i.e. decoder outputs)
to be more reliable than consistency in the encoder output. We
were unable to find a configuration that yielded any improve-
ment by regularizing the consistency in encoder outputs. One
explanation for this is that the semantics of the decoder are more
clearly understood than those of the encoder. The decoder out-
puts are WPM units. Measuring differences in this output space
is well understood, and optimized through cross-entropy here.
(Though, of course, other distance measures have are well mo-
tivated and used to optimize WER performance e.g. minimize
word error rate, etc.) On the other hand, it is not clear how
perturbations in the encoder output lead to different model be-
haviors. It is likely that the semantics of the encoder output
space is not well measured by L2 distance.

When calculating consistency loss, we make two forward
passes through the model with different augmented features.
While equivalent in the limit, the baseline model will see half
as many augmentations in the same number of backprop steps
as the models trained with consistency losses. The Baseline +
2 Forward experiment trains with two forward passes, accumu-
lating losses from two augmentations of the same data point
without applying a consistency loss term. This lets us measure
the impact of the duplicated forward pass (and making updates
supported by multiple augmentations of the same data point)
from the value of consistency measures. We find a small im-
provement from this duplicated forward pass training, but con-
sistency regularization by Jensen-Shannon (JS) divergence pro-
vides a decent consistency signal. In [17], we used KL diver-
gence when comparing consistency between clean speech and
a synthesized version of the same utterance. In that case there
was a clearly superior signal; the model should match the syn-
thesized output toward the clean output. In this case, neither
augmentation copy is a natural target for the update, making JS
divergence a more appropriate regularizer. We find JSD reg-
ularization to lead to a generally more robust model, general-
izing from clean training data in LibriSpeech-460 to the test-
other evaluation data. However, this improvement brings with
it lower performance on the in-domain test-clean evaluation set.

4.3. Tuning VAT Regularization

In Table 3, we report results from including VAT on model train-
ing. Since VAT results require two forward passes for each
update step, experiments are much slower. Therefore we tune
VAT parameters on with a small training budget, using only 24k
training steps. Experiments using VAT with a larger training
budget are reported in Section 4.4. We find VAT to provide
a substantial improvement to model training over the baseline.
One attractive property of VAT is that there is only a single hy-

Table 3: Regularization with VAT

Description test-clean test-other

Baseline 5.9 17.7
Baseline + VAT (norm=6) 5.9 16.9

Baseline + VAT (norm=10) 5.3 16.8

perparameter, namely a norm for the size of the adversarial step.
For this model, we find a larger norm to be effective.

4.4. SCADA Experiments

In the final set of experiments, we investigate how the most
effective approaches to Stochastic, Consistent and Adversarial
Data Augmentation (SCADA) training operates in aggregate.
Table 4 contains results of these experiments. In each of these

Table 4: Top line experiment

Description test-clean test-other

Baseline (B) 4.7 15.4
B + RA-Pre + RA-Spec 4.7 13.6
B + RA-Pre + RA-Spec + JSD 4.9 13.4
B + RA-Pre + RA-Spec + VAT 4.5 13.4
B + RA-Pre + RA-Spec + JSD + VAT 4.9 13.2

experiments, we use stochastic data augmentation policy se-
lection incorporating both RA-Pre and RA-Spec. We find this
component is effective in improving performance on test-other,
while not degrading clean results. Including two alternative
augmentation paths and using Jensen-Shannon consistency (JS)
delivers similar improvement to test-other, but shows a degra-
dation of clean performance. On the other hand VAT, a con-
sistency regularization based on an adversarially constructed
“augmentation”, delivers additional improvement to test-clean.
When we use both VAT and JSD, we obtain our best test-other
performance. However, this configuration sacrifices perfor-
mance on the test-clean set, a finding we observed by JSD in
Table 2 as well.

5. Conclusion
We have shown that data augmentation techniques can be com-
bined with consistency regularization to yield significant perfor-
mance wins on supervised learning for speech recognition tasks
particularly when generalizing to noisier speech. Using the Lib-
riSpeech task as an example, we derive the following messages:
1) symmetric consistency measures such as the Jensen-Shannon
Divergence provide 4% relative improvements in ASR perfor-
mance; 2) Augmented adversarial inputs using Virtual Adver-
sarial Noise (VAT) provides 12% relative win; and 3) Random
sampling from arbitrary combination of augmentation policies
yields the best policy. These contributions result in an overall
reduction in Word Error Rate (WER) of 15% relative on the
Librispeech test-other set training with 460 hours of data. The
combination of these three strategies results in a WER close to
an ASR system training with almost double the amount of data
(960 hours) demonstrating the potential of the approach pre-
sented in this paper.
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