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Abstract

This study addresses unsupervised subword modeling, i.e.,

learning feature representations that can distinguish subword

units of a language. The proposed approach adopts a two-stage

bottleneck feature (BNF) learning framework, consisting of au-

toregressive predictive coding (APC) as a front-end and a DNN-

BNF model as a back-end. APC pretrained features are set as

input features to a DNN-BNF model. A language-mismatched

ASR system is used to provide cross-lingual phone labels for

DNN-BNF model training. Finally, BNFs are extracted as the

subword-discriminative feature representation. A second aim of

this work is to investigate the robustness of our approach’s ef-

fectiveness to different amounts of training data. The results on

Libri-light and the ZeroSpeech 2017 databases show that APC

is effective in front-end feature pretraining. Our whole system

outperforms the state of the art on both databases. Cross-lingual

phone labels for English data by a Dutch ASR outperform those

by a Mandarin ASR, possibly linked to the larger similarity of

Dutch compared to Mandarin with English. Our system is less

sensitive to training data amount when the training data is over

50 hours. APC pretraining leads to a reduction of needed train-

ing material from over 5,000 hours to around 200 hours with

little performance degradation.

Index Terms: unsupervised subword modeling, autoregressive

predictive coding, cross-lingual knowledge transfer

1. Introduction

Training a DNN acoustic model (AM) for a high-performance

automatic speech recognition (ASR) system requires a huge

amount of speech data paired with transcriptions. Many lan-

guages in the world have very limited or even no transcribed

data [1]. Conventional supervised acoustic modeling techniques

are thus problematic or even not applicable to these languages.

Unsupervised acoustic modeling (UAM) refers to the task

of modeling basic acoustic units of a language with only un-

transcribed speech [2–7]. An important task in UAM is to learn

frame-level feature representations that can distinguish subword

units of the language for which no transcriptions are available,

i.e., the target language, and is robust to non-linguistic factors,

such as speaker change [1, 8]. This problem is referred to as

unsupervised subword modeling, and is the focus of this study.

It is essentially a feature representation learning problem.

There are many interesting attempts to unsupervised sub-

word modeling [2, 3, 6, 9–12]. One research strand is to use

purely unsupervised learning techniques [2, 3, 9]. For instance,

Chen et al. [2] proposed a Dirichlet process Gaussian mixture

model (DPGMM) posteriorgram approach, which performed

the best in ZeroSpeech 2015 [8]. Heck et al. extended this

approach by applying unsupervised speaker adaptation, which

performed the best in ZeroSpeech 2017 [3]. In a recent study

[13], a two-stage bottleneck feature (BNF) learning framework

was proposed. The first stage, i.e., the front-end, used the factor-

ized hierarchical variational autoencoder (FHVAE) [14] to learn

speaker-invariant features. The second stage, the back-end, con-

sisted of a DNN-BNF model [15], which used the FHVAE pre-

trained features as input features and generated BNFs as the de-

sired subword-discriminative acoustic feature representations.

In the case of unsupervised acoustic modeling, no frame labels

are available for DNN-BNF model training. In [13], DPGMM

was adopted as a building block of the back-end to generate

pseudo-phone labels for the speech frames. In another recent

study [9], the vector quantized VAE (VQ-VAE) [16] was ap-

plied to directly learn the desired feature representation without

a back-end model such as the DNN-BNF, and is comparable to

state-of-the-art performance [3].

In another research strand, frame-level feature representa-

tions that can distinguish subword units in the target language

are created using a cross-lingual knowledge transfer approach

[10, 11]. Here, out-of-domain (OOD) mismatched language re-

sources are used to train DNN AMs which are further used to

extract phone posteriorgrams or BNFs of the target speech. The

two research strands mentioned above can also be combined.

For instance, [11] proposed to apply the DNN-BNF model, and

utilized unsupervised DPGMM and OOD ASR systems to gen-

erate two types of frame labels for multi-task DNN-BNF learn-

ing. The two label types correspond to the two research strands

respectively. The results showed the complementarity of the

two label types in unsupervised subword modeling.

The present study adopts a two-stage BNF learning frame-

work similar to [13], and aims at combining unsupervised

learning techniques, specifically autoregressive predictive cod-

ing (APC) as a front-end, with cross-lingual knowledge trans-

fer in the back-end. Recently, APC has been shown [17] to

learn speech feature representations that are beneficial to vari-

ous downstream tasks, and outperform other effective unsuper-

vised methods such as contrastive predictive coding (CPC) [18]

in ASR, speech translation and speaker verification [19]. APC

preserves phonetic (subword) and speaker information from the

original speech signal, while the two information types are more

separable. This makes APC a possibly interesting method for

unsupervised subword modeling. In this paper, we investigate

the effectiveness of APC in this task for the first time.

In the second stage, a DNN-BNF back-end is trained, us-

ing the APC pretrained features as input features. Frame la-

bels required for DNN-BNF model training are obtained us-

ing an OOD ASR system as was done in [11]. By doing so,

cross-lingual phonetic knowledge is exploited. Two OOD ASR

systems trained on different OOD languages are employed for

comparison, in order to study the effect of target and OOD lan-

guage similarity on the performance of the proposed approach.

For low-resource languages for which transcribed data are

absent, even unlabeled speech can be costly to collect. The ro-

bustness of unsupervised subword modeling methods against
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Figure 1: General framework of the proposed approach to un-

supervised subword modeling.

limited amounts of training material is therefore an important

topic, however has received little attention in the literature so

far. The second aim of this work is therefore to systematically

investigate the robustness of the proposed approach’s effective-

ness to different amounts of training data. Specifically, we var-

ied the amount of training data from 10 hours to over 500 hours.

2. Proposed approach

The general framework of our proposed approach is illustrated

in Figure 1. Given untranscribed speech data of a target lan-

guage, an APC model is pretrained in the front-end. Next, an

OOD ASR system trained on a language different from the tar-

get language assigns a phone label to every frame of the target

language’s speech data through decoding. Pretrained features

created by the APC model and the cross-lingual phone labels

created by the OOD ASR are then used to train a DNN-BNF

model in the back-end, from which BNFs are extracted as the

subword-discriminative representation in the final step.

Front-end APC pretraining will be compared with an FH-

VAE approach [14] which was used in related previous work

[13]. The whole pipeline of our approach will be compared with

a system consisting of only the back-end DNN-BNF model, and

a CPC approach [18] applied in the same task [20]. Moreover,

two different languages will be used to train two different OOD

ASR systems for comparison.

2.1. APC pretraining

In our concerned task, previously adopted feature learning

methods usually target suppressing speaker variation, such as

FHVAE [13] and speaker adaptation [3]. In contrast, APC

aims at learning a representation that keeps information from

speech, while phonetic information is made more separable

from speaker information. The learned representation is con-

sidered less risky of losing phonetic information than represen-

tations learned by methods in [3, 13].

Let us assume a set of unlabeled speech frames

{x1,x2, . . . ,xT } for training, where T is the total number of

frames. At each time step t, the encoder of APC model Enc(·)
reads as input a feature vector xt, and outputs a feature vec-

tor x̂t (same dimension as xt) based on all the previous inputs

x1:t = {x1, . . . ,xt},

x̂t = Enc(x1:t). (1)

The goal of APC is to let x̂t be as close as possible to xt+n,

where n is a pre-defined constant positive integer, denoted as

prediction step. The loss function during APC training is de-

fined as: Loss =
∑

T−n

t=1
|x̂t − xt+n|. Intuitively, increasing

n encourages the encoder to capture contextual dependencies in

speech, while a small n focuses more on local smoothness.

Here, the encoder of APC Enc(·) is realized by a long

short-term memory (LSTM) [21] RNN. Let L denote the num-

Table 1: Libri-light training data and its subsets.

unlab-6K unlab-600 subsets of unlab-600

#utterances 362, 817 36, 229 14, 400 7, 200 3, 600 900
#speakers 1, 742 489 438 393 351 244
Hours 5, 273 526 209 104 52 13

ber of LSTM layers, Equation (1) is formulated as,

h0 = x1:t, (2)

hl = LSTM
l(hl−1), l ∈ {1, 2, . . . , L}, (3)

x̂t = WhL, (4)

where W is a trainable projection matrix. The equations that

form LSTM(·) can be found in [22].

After APC training, the output of the top hidden layer hL

is extracted as the learned acoustic representation, and is hence-

forth referred to as the APC feature. Although in principle, hl

of any layer l could be used as the learned representation, we

follow [17] in using the output of the top layer as they showed

that this gave the best results in phone classification tasks.

2.2. Cross-lingual phone-aware DNN-BNF

As shown in Figure 1, the DNN-BNF back-end is a DNN with

a bottleneck layer in the middle [23]. To obtain cross-lingual

phone labels, the OOD ASR is used to decode target speech

utterances into lattices, and find the best path for every utter-

ance. Afterwards, each speech frame is assigned with a triphone

HMM state modeled by the OOD ASR. These state labels pro-

vide phonetic representation for the target speech from a cross-

lingual perspective.

After obtaining triphone HMM state labels as cross-lingual

phone labels, the DNN-BNF is trained using the pretrained APC

features and the cross-lingual phone labels in a supervised man-

ner [24], and used to extract BNFs as the desired subword-

discriminative feature representation.

3. Experimental setup

3.1. Databases and evaluation metric

English is chosen as the target language while Dutch and Man-

darin are chosen as the two OOD languages. Training data for

APC pretraining and DNN-BNF model training are taken from

Libri-light [20], a newly published English database to support

unsupervised subword modeling. The unlab-600 and unlab-6K

sets from Libri-light are adopted. Unlab-600 is used in both

APC pretraining and DNN-BNF model training, while unlab-

6K is used only in DNN-BNF model training. Unlab-600 con-

sists of 526 hours of speech excluding silence. Additionally, we

randomly select four subsets of utterances from unlab-600 to in-

vestigate the robustness of our approach to different amounts of

training material. These subsets consist of 900 (i.e., 13 hours),

3.6K (52 hours), 7.2K (104 hours), and 14.4K (209 hours) ut-

terances. Unlab-6K set consists of 5, 273 hours of speech ex-

cluding silence. Details of the training sets are listed in Table 1.

The Dutch and Mandarin corpora used for training the two

OOD ASR systems are the CGN [25] and Aidatatang 200zh

[26], respectively. The CGN training and test data partition fol-

lows [27]. Its training data contains 483 hours of speech, cov-

ering speaking styles including conversational and read speech

and broadcast news. Aidatatang 200zh is a read speech corpus.

Its training data contains 140 hours of speech.

Evaluation data are taken from Libri-light and ZeroSpeech

2017 [1]. Libri-light evaluation sets consist of dev-clean, dev-
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other, test-clean and test-other. , with ∗-clean having higher

recording quality and accents closer to US English than ∗-other

[28]. They are used to evaluate the effectiveness of both front-

end pretrained features and BNFs learned by the back-end.

Evaluation on ZeroSpeech 2017 aims to better compare our

approach with previous research in this area. English evalua-

tion data from ZeroSpeech 2017 are used to evaluate the effec-

tiveness of BNFs learned by the the back-end. These data are

organized into subsets of differing lengths (1s, 10s & 120s) [1].

The created BNFs, as well as APC pretrained features, are

evaluated in terms of the ABX subword discriminability [1]. In

the ABX task, A, B and X are three speech segments, and x

and y are two different phonemes. A ∈ x, B ∈ y, X ∈ x or

y. Following [1] (see also for more details), an error occurs if

given a pre-defined distance measure d, d(A,X) > d(B,X),
given X ∈ x, or d(A,X) < d(B,X), given X ∈ y. Dynamic

time warping is chosen as the distance measure. Segments A

and B belong to the same speaker. ABX error rates for within-

speaker and across-speaker are evaluated separately, depending

on whether X and A belong to the same speaker.

3.2. Front-end

The APC model is implemented as a multi-layer LSTM net-

work. Residual connections are made between two consecutive

layers. Each LSTM layer has 100 dimensions. Unless specified

explicitly, the number of LSTM layers is 3. For each training

data amount setting, the prediction step n (in Section 2.1) is

picked from {1, 2, 3, 4, 5} which gives the best ABX perfor-

mance. Our preliminary experiments showed that increasing n

to larger than 5 would lead to rapid degradation in ABX er-

ror rate. The input features to APC are 13-dimension MFCCs

with cepstral mean normalization (CMN) at speaker level. The

model is trained with the open-source tool by [17] for 100
epochs with the Adam optimizer [29], an initial learning rate

of 10−4, and a batch size of 32. After training, the top LSTM

layer’s output is extracted as the APC feature representation.

The performance of front-end APC pretraining is compared

against FHVAE [14], which was used in related previous work

[13]. The latent representation z1 of FHVAE is known to be

preserving linguistic content while suppressing speaker varia-

tion [14], and is compared with the APC feature representation.

The model architecture of FHVAE and its training procedure

follow those in [13]. The FHVAE models are trained using

an open-source tool [14], and take the same input features and

training data (i.e., Libri-light) as the APC models. After train-

ing, the FHVAE encoder’s output z1 is extracted.

3.3. Back-end

3.3.1. OOD ASR systems

We trained two OOD ASR systems, i.e., a Dutch ASR and a

Mandarin ASR. The OOD ASR systems use a chain-time de-

lay NN (TDNN) AM [30] trained using Kaldi [31], containing

7 layers. The TDNN is trained based on the lattice-free maxi-

mum mutual information (LF-MMI) criterion [30]. For Dutch,

the input features consist of 40-dimension high-resolution (HR)

MFCCs. For Mandarin, the input features consist of HR

MFCCs appended by pitch features [32]. Frame labels required

for TDNN training are obtained by forced-alignment with a

GMM-HMM AM trained beforehand. For both systems, a tri-

gram LM is trained using training data transcriptions.

The Dutch ASR obtained a word error rate (WER) of 8.98%
on the CGN broadcast test set. (This WER could be improved

Figure 2: ABX error rates of APC features, FHVAE features and

official MFCC baseline on Libri-light (Avg. over 4 sets).

upon by integrating an RNN LM. However, as Dutch ASR per-

formance is not the focus of this study, an RNN LM is not

applied.) The Mandarin ASR obtained a character error rate

(CER) of 6.37% on the Aidatatang 200zh test set. The two

ASR systems are used to generate cross-lingual phone labels

for Libri-light training speech frames.

3.3.2. DNN-BNF setup

Two DNN-BNF models are trained, one taking the Dutch cross-

lingual phone labels as training labels and one taking the Man-

darin phone labels as training labels.

The DNN-BNF consists of 7 feed-forward layers (FFLs).

Each layer has 450 dimensions except a 40-dimension bottle-

neck layer, which is located below the top FFL. The DNN-BNF

uses a chain model [30] which is trained based on the LF-MMI

criterion. The inputs to DNN-BNF are the APC feature with

its neighboring (−3 to +3) frames. After DNN-BNF train-

ing, 40-dimension BNFs are extracted as the learned subword-

discriminative representation and evaluated with the ABX task.

For the purpose of comparison, two more DNN-BNF mod-

els are trained using the 40-dimension HR MFCC with its

neighboring (−3 to +3) frames as input features. One model

takes the Dutch labels and the other takes the Mandarin labels.

Other training and model settings are unchanged. After train-

ing, BNFs are extracted and also evaluated with the ABX task.

4. Results and discussion

4.1. Effectiveness of APC features

In this subsection, the APC features and FHVAE features in

the front-end (z1) are directly evaluated using the ABX task,

without being modeled by the DNN-BNF back-end. ABX er-

ror rates (%) of the APC and FHVAE features with respect to

different hours of training data are shown in Figure 2. ABX re-

sults in this figure are averaged values over the 4 evaluation sets

in Libri-light. The official MFCC baseline [20] is also shown

in this figure. It can be observed that both the APC features

and the FHVAE features outperform the MFCC features. The

APC features are consistently superior to the FHVAE features

in both the across- and the within-speaker conditions irrespec-

tive of the amount of training data. Figure 2 (left) indicates that

the APC features are more robust to speaker variation than the

FHVAE features, even though the APC model is not explicitly

suppressing speaker variation as FHVAE is.

4.2. Effectiveness of BNF representation

In this subsection, all models are trained with unlab-600 (526
hours). ABX error rates (%) of BNFs extracted by the back-

end DNN-BNF model are listed in Table 2. The second and

third columns denote input feature types and frame labels for

training DNN-BNF models. ‘Du’ and ‘Ma’ stand for Dutch and

Mandarin. Two front-end features, i.e. APC and CPC (in [20]),
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Table 2: ABX error rates of BNFs, APC and CPC on Libri-light.

Models are trained with unlab-600. APC has 5 layers, as this

gives the best performance among different nos. of APC layers.

Across-speaker
Feature Input Label dev-clean dev-other test-clean test-other Avg.

BNF
APC Du 6.18 11.02 6.03 10.94 8.54

MFCC Du 6.67 11.65 6.64 12.00 9.24
APC Ma 7.00 11.80 6.84 11.81 9.36

MFCC Ma 7.92 12.71 7.74 13.23 10.40

APC - 12.64 19.00 12.19 18.75 15.65
CPC [20] - 9.58 14.67 9.00 15.10 12.09

Within-speaker

BNF
APC Du 4.77 6.69 4.49 6.43 5.60

MFCC Du 4.97 6.94 4.73 6.86 5.88
APC Ma 5.25 7.14 5.21 7.09 6.17

MFCC Ma 6.06 7.71 5.62 7.82 6.80

APC - 8.83 11.07 8.36 11.48 9.94
CPC [20] - 7.36 9.39 6.90 9.59 8.31

Figure 3: ABX error rates of BNFs w.r.t amount of training data

on Libri-light (Avg. over 4 sets).

are also listed as references. From this table, it is observed that:

(1) DNN-BNF trained with APC features performs better

than that trained with MFCC features in all the evaluation sets.

This demonstrates the effectiveness of front-end APC pretrain-

ing in our proposed two-stage system framework.

(2) The BNFs obtained from the back-end DNN-BNF

model outperform the APC features from the front-end. In

other words, the results show that back-end DNN-BNF model-

ing with cross-lingual phone labels outperforms front-end pre-

trained features for unsupervised subword modeling, similar to

what has been observed by [10, 11]. BNF also performs better

than the CPC feature [20]. Note that CPC does not require OOD

resources during training while BNF in this study does.

(3) The performance achieved by adopting Dutch labels in

DNN-BNF model training is slightly better than that by adopt-

ing Mandarin labels. This can possibly be explained by the

similarity between the OOD language and target in-domain lan-

guage, i.e., Dutch and English, respectively, which are both

West Germanic languages, while Mandarin is not. Although

one could possibly attribute the superiority of adopting Dutch

labels over Mandarin labels to the larger amount of training data

for Dutch (483 hours) than for Mandarin (140 hours), this is not

a likely explanation because both models achieved fairly similar

results on their respective in-domain test sets (in Section 3.3.1).

Table 2 also shows CPC outperforms APC. We plan to re-

place the front-end APC with CPC and study its efficacy in com-

bination with the back-end DNN-BNF model in the future.

4.3. Effect of amount of training data

ABX error rates (%) of BNFs extracted by DNN-BNF models

with respect to different amounts of training data in hours are

illustrated in Figure 3. The results are averaged values over

the 4 evaluation sets in Libri-light. Unlab-6K (5, 273 hours) is

only adopted in training DNN-BNF models with MFCC input

features (marked as “∗”). For models trained with APC features

Table 3: ABX error rates of BNFs on ZeroSpeech 2017 English

evaluation sets. Models are trained with Libri-light.

Across-speaker Within-speaker
System Hours 1s 10s 120s Avg. 1s 10s 120s Avg.

Proposed-Du
526 7.65 6.69 6.66 7.00 5.52 4.77 4.68 4.99
209 8.11 6.99 6.90 7.33 5.83 5.06 4.97 5.29
104 8.14 7.07 7.03 7.41 5.89 4.99 5.00 5.29

Proposed-Ma
526 8.19 7.33 7.30 7.61 5.97 5.39 5.37 5.58
209 8.62 7.61 7.52 7.92 6.31 5.52 5.60 5.81
104 8.47 7.62 7.52 7.87 6.13 5.49 5.44 5.69

Topline [1] 8.6 6.9 6.7 7.40 6.5 5.3 5.1 5.63
[10] 7.9 7.4 6.9 7.40 5.5 5.2 4.9 5.20

as input features (“⋄”), the data amount for APC pretraining

and DNN-BNF model training is the same for each run. From

Figure 3, it can clearly be seen that performance improves as

more training data is available, with the largest improvement

when the training data increases from 13 hours to 52 hours, and

less improvement for any additional training material.

Secondly, across the different data amounts, the DNN-BNF

models trained with APC features as input features are almost

consistently better than those with MFCC input features. In-

terestingly, with Dutch labels, the model that uses APC fea-

tures and is trained with 209 hours of data achieves a simi-

lar across-speaker error rate (8.78%) to the model trained with

MFCCs with 5, 273 hours of data (8.70%). This implies that

APC pretraining “saves” around 5, 000 hours (i.e. 96%) of

training data, making APC pretraining highly appealing in low-

resource speech modeling. The effect of pretraining on the

needed amount of training data is even larger when Mandarin

labels are used (saving over 99% of the training data).

4.4. ZeroSpeech 2017 results

We also evaluated the performance of our approach on the Ze-

roSpeech 2017 English evaluation sets. The results are shown

in Table 3, which also includes the official topline [1] and the

best-performing system (using OOD data) [10]. Note that, un-

like our approach, these two systems employed English labeled

data. The total amount of labeled training data used in [10] is

1, 327 hours (including 80-hour English data). In this table,

“Proposed-Du/-Ma” denotes our proposed approach by adopt-

ing Dutch or Mandarin labels respectively. Interestingly, using

Dutch labels, our system trained with 526 hours of data out-

performs the topline and [10] systems, and is comparable to

the two reference systems when trained with only 104 hours of

data. Table 3 also shows the proposed approach by adopting

Dutch labels performs better than that by adopting Mandarin

labels, which is consistent with observations in Section 4.2.

5. Conclusions

This study addresses unsupervised subword modeling, and pro-

poses a two-stage system that consists of APC pretraining and

cross-lingual phone-aware DNN-BNF modeling. Experimental

results on Libri-light and ZeroSpeech 2017 databases demon-

strate the effectiveness of APC in front-end feature pretrain-

ing. It surpasses a previously adopted FHVAE approach. Our

whole system outperforms the state of the art on both databases.

Cross-lingual phone labeling for English data by a Dutch ASR

is slightly better than by a Mandarin ASR. This is possibly

linked to the larger similarity of Dutch than Mandarin with En-

glish. The proposed approach benefits from increasing training

data amount, and is less sensitive to data amount when the train-

ing data is over 50 hours. When using APC pretraining, 4% of

the training material could result in a similar performance to

using the full training set without APC pretraining.
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