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Abstract
This paper introduces Multilingual LibriSpeech (MLS) dataset,
a large multilingual corpus suitable for speech research. The
dataset is derived from read audiobooks from LibriVox and con-
sists of 8 languages, including about 32K hours of English and
a total of 4.5K hours for other languages. We provide baseline
Automatic Speech Recognition (ASR) models and Language
Models (LM) for all the languages in our dataset. We believe
such a large transcribed dataset will open new avenues in ASR
and Text-To-Speech (TTS) research. The dataset will be made
freely available for anyone at http://www.openslr.org.
Index Terms: speech recognition, multilingual

1. Introduction
The success of LibriSpeech [1] as a standard, freely available,
Automatic Speech Recognition (ASR) benchmark is undeniable
in the research community. LibriSpeech is English-only, and
while benchmarks for other languages are available, there are
often low-scale or scattered around different places, and rarely
available under an open license. In this paper, we revisit the
work which has been done with LibriSpeech but in a multi-
lingual manner and at larger scale, introducing the Multilingual
LibriSpeech (MLS) dataset. MLS includes 32K hours of En-
glish, and a total of 4.5K hours spread over 7 other languages.
As for LibriSpeech, MLS is a read-speech dataset, which lever-
ages LibriVox1 audiobook data, most of which being based on
the Project Gutenberg2 text data. LibriVox and Project Guten-
berg data are released in the public domain, which allows us to
release MLS freely to everyone.

In Section 3, we detail how we created the dataset, by
(i) training some acoustic models on in-house data, (ii) gen-
erating pseudo-labels with these models, and (iii) retrieving the
original transcript by matching pseudo-labels to available book
transcripts. Section 4 details the statistics of MLS for its dif-
ferent languages. Section 5 introduces languages models we
trained for each of language. These languages models are part
of the MLS release. Section 6 covers some baseline ASR ex-
periments.

2. Related Work
As for our work, LibriSpeech [1] is derived from the Lib-
riVox data, and is distributed under an open license. It ships
with about 1000 hours of labeled audio, obtained by leveraging
alignments between textbooks and their read (audio) counter-
part. In contrast to our work, it is only mono-lingual (English).
A notable multi-lingual ASR dataset was built with the IARPA
Babel Program [2]. It collected data for 24 languages, mostly
from conversational telephone speech. The dataset is however

1https://librivox.org
2http://www.gutenberg.org

Language Hours Books Speakers

English 71,506.79 12421 4214
German 3,287.48 593 244
Dutch 2,253.68 206 91
Spanish 1,438.41 285 120
French 1,333.35 224 114
Multilingual* 516.82 130 19
Portuguese 284.59 68 31
Italian 279.43 61 28
Russian 172.34 44 29
Latin 138.93 20 16
Polish 137.00 25 16
Church Slavonic 136.42 8 2
Hebrew 125.72 23 13
Japanese 97.67 38 24
Ancient Greek 69.77 43 8

Table 1: LibriVox Audiobook data statistics for the top 15 lan-
guages; * - audio books with mix of multiple languages

not released and under an open license, and focused on low-
resource languages, with labeled data ranging between 25 to
65 hours per language. On the open license side, two impor-
tant volunteer-supported multi-lingual speech gathering efforts
are being conducted: (i) VoxForge [3] which collected data for
about 15 different languages, but remains low-scale (about 300
hours in total). (ii) CommonVoice [4], a more scalable solution,
with more than 30 languages available, which keeps growing
with 4500 (validated) hours currently available. Other notat-
able multi-lingual datasets distributed under an open license are
the M-AILABS [5] and the CMU Wilderness [6] datasets. M-
AILABS is a lower-scale version of our work, with 9 languages
collected from LibriVox, for a total of about 1000 hours avail-
able. The CMU Wilderness collects readings from the New Tes-
tament, with 700 different languages available.

3. Data processing pipeline
This section describes the major steps involved in preparing the
MLS dataset.

3.1. Downloading audiobooks

Table 1 shows the LibriVox audiobooks data available for each
language that we measured using LibriVox APIs 3. While En-
glish is the most dominant language, we can see that there is a
significant amount of audio hours present in languages other
than English, making this a valuable source for multilingual
dataset preparation.

3https://librivox.org/api/info
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We have selected English, German, Dutch, Spanish,
French, Portuguese, Italian, Polish for the MLS dataset prepa-
ration. For downloading the LibriVox audiobooks in these lan-
guages, we have used data preparation tools available at Libri-
Light 4 open source library.

3.2. Audio segmentation and pseudo label generation

Since acoustic model training is usually done on shorter ut-
terances, we have used trained acoustic models in each of
the languages to segment the data. The acoustic models are
trained using Time-Depth Separable Convolutions with Auto-
Segmentation Criterion [7] (ASG) loss. We chose ASG crite-
rion over Connectionist Temporal Classification [8] (CTC) cri-
terion since ASG doesn’t exhibit delay in transcriptions com-
pared to CTC [9]. For each language, we train models on in-
house datasets consisting of videos publicly shared by users.
We use only audio part of the videos and the data is completely
de-identified.

Our segmentation process is run in two steps. First, we
run inference on the audio and generate viterbi token sequence
along with their timestamps. Since the audio files can be
very long (>30 minutes), we have used wav2letter@anywhere
framework [10] to perform the inference in a streaming fashion.
Second, we select the longest silence duration within 10 sec to
20 sec range from the start of an audio and split the audio at the
mid point of the silence chunk to create a segment. If no silence
frames are found between 10 sec to 20 sec from the starting
point, we split the audio at 20 sec mark. Once we generate a
segment, we consider the end point of previous segment as the
current starting point and repeat the process again till we reach
the end of audio. This process guarantees that all the segments
are between 10sec and 20sec. A minimum segment duration of
10 sec is kept so that the segments have sufficient number of
words spoken which helps with better transcript retrieval (de-
scribed in Section 3.4).

We generate pseudo labels for the segmented audio samples
by performing a beam-search decoding with the same models as
mentioned above and using a 4-gram LM trained on the training
data used for the models. For English, however, we use pre-
trained model from [11] which uses TDS encoder and CTC loss
on LibriSpeech [12], LibriVox for generating pseudo labels.

3.3. Downloading text sources for audiobook data

To generate the labels for the audio segments derived from au-
diobooks, we would need to have the original textbook from
which the speaker read the audiobook. For English, we found
that≈60,000 hours of audiobooks is read from four major web-
site domains - gutenberg.org, archive.org, ccel.
org and hathitrust.org. We wrote parsers to automati-
cally extract the text for each of these domains and downloaded
the text sources for all the audiobooks in English.

For other languages, however, we found it more challeng-
ing to automatically extract text for the audiobooks because 1.
the diversity of domains is large making it impossible to write
parsers for each and every domain 2. some of the links were
invalid or redirected to an incorrect page. So, we incorporated
some manual approaches in our process to cover the audiobook
text sources as much as possible. Depending on the language
and text source domain, we copied the data directly from the
browser or extracted text from .pdf/.epub books using pdfto-

4https://github.com/facebookresearch/
libri-light

text5, or writing HTML parsers to retrieve text data for popular
domains in a language.

For the audiobooks with invalid links for text sources, we
manually searched online to find alternate sources where the
book is available. For example, all the text sources from the
spiegel.de domain, which accounts of 1/3rd of German au-
diodata, were being redirected to an invalid page. However, we
were able to find the alternate text sources from online web-
sites like projekt-gutenberg.de, zeno.org for most
of these unavailable books from spiegel.de.

3.4. Transcript retrieval

The transcript retrieval process involves finding the true target
label for the audio segments from the source text of audio. Our
procedure closely follows the method described in [13] with few
modifications.

We first split the source text into multiple overlapping doc-
uments of 1250 words each and striding by 1000 words. We re-
trieve the documents which best matches with the pseudo label
for the audio segments using term-frequency inverse document-
frequency (TF-IDF) similarity score on bigrams. We then per-
form a Smith-Waterman alignment [14] to find the best match-
ing sub-sequence of words. We have used a matching score of 2
and substitution, insertion, deletion score of -1 for the alignment
algorithm.

After the above alignment procedure, we generate a candi-
date target label for each audio segment, which corresponds to
the best match of the pseudo label in the source text of audio-
book. We filter out all the candidate transcripts generated from
the matching algorithm above, if the WER between the candi-
date transcript and pseudo label generated is >40% .

3.5. Creating validation and test splits

We have used the following principles when splitting the dataset
into train, valid and test sets - 1) there is no speaker overlap
between the training, development and test sets, 2) speakers are
balanced in gender and duration in development and test sets
and 3) there are sufficient audio hours and speakers assigned
into development and test sets to be able to validate ASR model
performance.

First, we select the list of all the books available for a lan-
guage. We remove all the books with corrupted meta data,
such as missing title or information about speakers and au-
thors. Then, to ensure that each recording is unambiguously
attributable to a single speaker, we also remove audios with
multiple speakers, for example, “Dramatic Reading”, which in-
clude predominantly multi-reader audio chapters. In addition,
we only keep the latest version for books sharing the same au-
thors and title, but different versions. Only the speakers reading
the valid books are considered in the transcript retrieval process
from section 3.4.

Second, we label the gender of all the speakers with a gen-
der classifier. The classifier is a SVM [15] with RBF kernel
trained on 1172 speakers from train-clean-100 and train-clean-
360 subsets of LibriSpeech . In particular, it consumes 40-
dimensional log-filterbank features averaged over time as input
features. The test accuracy on the 146 speakers from the joint
development and test sets of LibriSpeech is 95%. We use the
same gender classifier for other languages as well. We manu-
ally checked the quality of this classifier on Dutch and Polish
and it’s accuracy is 96% and 94% respectively.

5https://pypi.org/project/pdftotext/
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Table 2: Statistics of Train/Dev/Test partitions of each language. Below lists for each partition: the total duration in hours (left),
number of speakers in each gender (middle) and the shortest and longest duration in minutes for speakers in dev and test sets (right).

Language Hours Speakers Min/Speaker

Train Dev Test Train (M/F) Dev (M/F) Test (M/F) Min Max

English 32073 25.5 26.1 2396 2473 34 40 37 39 20 21
German 1430.6 16.1 16.1 56 56 14 14 14 14 20 40
Dutch 1086 3.6 4.1 5 26 5 5 5 5 5 100

Spanish 718.7 8.9 9 36 41 9 9 9 9 20 40
French 637.6 7.6 7.7 62 79 7 7 7 7 20 40
Italian 221 4.8 4.8 22 43 5 5 5 5 20 40

Portuguese 121.4 4.3 4.4 22 12 5 5 5 5 10 30
Polish 58 2.3 2.4 4 2 3 3 3 3 9 40

Figure 1: Violin plots of audio segments duration in the training
data for different languages

Finally, the dataset is split into training, development and
test sets as following. We computed the total duration each
speaker spends in reading the valid books, and order them by
this duration. Speakers with duration shorter than a threshold
are assigned into the training set. From the rest speakers, we
specify an amount of speakers per gender and select out a se-
ries of speakers with the shortest duration in each gender. The
selected speakers are then equally split into development and
test sets. All the remaining speakers are assigned to training set
again. To avoid high speaker imbalance in development and test
sets, we further truncate the speakers with high duration by sam-
pling their recordings up to an upper-bound. The detailed statis-
tics can be found in Table 2. For English, however, we make
train, valid and test sets a pure superset of LibriSpeech. Specif-
ically, the same procedure for splitting the dataset as above
is conducted first on the speaker set that has no overlap with
the speakers in LibriSpeech. Then the speakers in LibriSpeech
training, development and test sets are assigned into our new
splits accordingly. This means that the development and test
sets of LibriSpeech are 100% contained in our English develop-
ment and test sets.

4. Statistics
Table 2 shows the amount of train, valid and test data along
with the gender distribution of speakers for the 8 languages that
we processed. The training data is lower than the data we pre-
sented in Table 1 because of 1) we may not have downloaded
the text source for the audiobook, 2) the candidate label is filter
during the transcript retrieval stage or 3) filtered while creating
valid/test splits.

Figure 1 shows the violin plots of the duration of audio seg-
ments in training data for each language. We can see that all the
segments are within 10sec to 20 sec range and all the sizes are
almost evenly distributed inside the range.

5. Language models
We have trained language models (LM) for all the languages
in our dataset. Those LMs are 5-gram models trained on train-
ing transcriptions using the KenLM toolkit [16]. The number
of words of each LM and their perplexities (excluding out-of-
vocabulary words) on the transcriptions in development sets are
listed in Table 3. We also release those models, to be potentially
used as standard benchmarks when comparing only acoustic
models.

Table 3: Language Models

Language Words Perplexity

English 986491 184.7
German 249440 585.6
Dutch 159067 386.8
Spanish 155627 283.1
French 128938 344.0
Italian 83557 760.4
Portuguese 72856 779.5
Polish 60154 1684.6

6. Experiments and results
6.1. Training setup

All our experiments are run using the wav2letter++ [17] frame-
work. We use 80-dimensional log mel-scale filter banks as in-
put features, with STFTs computed on 25ms Hamming win-
dows strided by 10ms. We use SpecAugment [18] with Lib-
riSpeech Double setting for all the experiments. The AMs take
80-channel log-mel filterbanks as input and are trained end-to-
end with Connectionist Temporal Classification (CTC) loss [8].

6.2. Monolingual Baselines

For English, we use the best-performing TDS architecture on
LibriSpeech from [19] in our experiments. In particular, the
model is mainly built upon Time-Depth Separable Convolu-
tion (TDS) [20] blocks. It is composed of one 2-D convolution
layer and two fully-connected layers with ReLU, LayerNorm
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Table 4: Baseline WER for different languages.

Language No LM 5-gram LM

Dev Test Dev Test

English 14.45 15.18 11.90 12.64
German 16.53 17.84 14.37 15.57
Dutch 27.95 30.53 24.28 28.87

Spanish 12.96 12.46 11.40 11.07
French 18.63 19.66 16.58 18.08
Italian 32.77 36.70 24.54 28.19

Portuguese 42.47 44.45 36.88 39.55
Polish 46.92 67.23 43.61 60.32

and residual connections in between. Specifically, the model
has 4 groups of TDS blocks with a 1-D convolutions at the be-
ginning of each group as transitions. Similarly, the first 3 con-
volutions have stride 2 so as to reach the same sub-sampling
(striding) rate of 8, thus 80ms. There are 2, 2, 5, and 8 TDS
blocks in each group, containing 16, 16, 24, and 32 channels,
respectively. Following [19], we also apply a channel increas-
ing factor F = 2 in each TDS block.

For the other languages, we experimented with three model
architectures of varying capacities, all of which were based on
the TDS architecture with CTC loss [8]. The capacity of the
models is adjusted by changing the number of TDS blocks. The
smallest model architecture (60M parameters) contains two 10-
channel, three 14-channel and five 18-channel TDS blocks. In
the 100M parameter architecture, we use convolutions of the
same width but increase the number of blocks to three, four and
eight respectively. Finally, in the largest architecture (200M pa-
rameters), we increase the numbers to five, six, and ten respec-
tively. We used dropout and spectral augmentation [18] to reg-
ularize the models and we tuned dropout extensively for each
language.

We have also experimented with different token sets:
graphemes or sub-word tokens generated using the Sentence-
Piece toolkit [21]. For the lowest resource languages (Italian,
Portuguese and Polish), we obtained the best results with a 60M
parameter model. For these languages, we experimented with
graphemes, 300 sentence pieces and 500 sentence pieces as the
token set and found graphemes to work best for Italian and Pol-
ish and 300 sentence pieces to work best for Portuguese. For the
other languages, we only experimented with 5,000 and 10,000
sentence pieces and found 10,000 sentence pieces to work best.
We obtained our best results with a 200M parameter model
for all languages except Dutch, for which the 100M parameter
model outperformed the others.

Finally, we use beam-search decoding in wav2letter++ to
integrate external 5-gram language models trained on the train-
ing text, together with the AMs. The decoder hyper-parameters
are tuned on the validation set.

Table 4 shows the best results obtained for each language
on the (averaged) Dev and Test sets with and without a language
model. There is a lot of room for improvement upon those base-
lines, which vary between 11% and 60% WER depending on
languages.

7. Conclusions
We have presented the Multilingual LibriSpeech dataset, a large
scale multilingual speech dataset with 36.5K hours of training

data spread over 8 languages. We believe this dataset will pro-
mote open research in large-scale training of ASR systems and
in multilingual ASR. This dataset can also be used for Text-to-
Speech(TTS) research by extending the LibriTTS [22] dataset,
and by creating a larger and multilingual version for TTS Re-
search.
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