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Abstract 
Capturing the temporal dependence of speech signals is of 
great importance for numerous speech related tasks. This 
paper proposes a more effective temporal modeling method 
for causal speech enhancement system. We design a forward 
stacked temporal convolutional network (TCN) model which 
exploits multi-scale temporal analysis in each residual block. 
This model incorporates a multi-scale dilated convolution to 
better track the target speech through its context information 
from past frames. Applying multi-target learning of log power 
spectrum (LPS) and ideal ratio mask (IRM) further improves 
model robustness, due to the complementarity among the tasks. 
Experimental results show that the proposed TCN model not 
only performs better speech reconstruction ability in terms of 
speech quality and speech intelligibility, but also has smaller 
model size than that of long short-term memory (LSTM) 
network and the gated recurrent units (GRU) network. 
Index Terms: speech enhancement, multi-scale, temporal 
convolutional network, multi-objective learning. 

1. Introduction 
In the past few decades, there has been considerable interest in 
solving the noise interference of speech signals received in our 
real-life environments. Speech enhancement has been widely 
employed as a key front-end signal processing technique for 
various speech related products, such as hearing aids, smart 
phones and teleconferencing system. Despite its long research 
history, monaural speech enhancement is still a challenging 
subject in dealing with the complex and serious noise damage 
conditions.  

Recently, deep neural networks (DNNs) has spurred the 
development of monaural speech enhancement, owed to their 
powerful modeling capacity on the relationship between 
corrupted and clean speech. Feedforward neural network 
(FNN) is the most widely used DNN model in the research 
field of speech enhancement. Many objective expressions, like 
ideal binary mask (IBM) [1], ideal ratio mask (IRM) [2] and 
log power spectrum (LPS) [3, 4], were proposed as training 
targets for supervised FNN-based speech denoising task. The 
human acoustic properties [5, 6] were also incorporated into 
the loss function of FNN model to achieve more comfortable 
enhanced speech. However, noise and speaker generalization 
problems exist in many FNN-based speech denoising methods, 
due to the characteristics of local frame modeling. The limited 
temporal windows of acoustic input features are not sufficient 
to decide the target speaker to focus on since the energy of 
target speech and noise fluctuates over time and the local 
signal-to-noise ratio (SNR) varies [7]. Although the usage of 
context information from past and future frames effectively 

improved the generalization problem in [4], it brought the 
non-causal problem for a real-time processing system.  

Considering the temporal dependence of signals, recurrent 
neural networks (RNNs) have been utilized in [7, 8, 9, 10] to 
improve the generalization ability of DNN-based speech 
denoising models. Long short-term memory (LSTM) units and 
gated recurrent units (GRU) employed in those models help to 
capture longer context memory from past speech frames. It is 
found that the RNN-based models are more advantageous for 
low-latency speech enhancement system and it, without future 
frames, performs better than the FNN-based models with 
future frames. Furthermore, multi-objective learning strategy 
used for LSTM in [11, 12, 13] further improved the enhanced 
speech quality and intelligibility. 

More recently, temporal convolutional network (TCN) 
model with causal dilated convolutions showed better memory 
superiority for sequential modeling tasks [14]. Inspired by this 
idea, we propose a novel multi-scale TCN model that stacks 
the input features forward into each residual block for speech 
enhancement. A multi-scale convolution method is proposed 
to enlarge and refine the receptive field of model. Specifically, 
the stacked input features are concatenated with the extracted 
features in each residual block to perform multi-scale analysis. 
Additionally, to fully utilize the underlying complementarity 
of different training targets, LPS and IRM are combined for 
multiple-target joint learning.  

The rest of paper is organized as follows. The architecture 
of forward stacked multi-scale TCN model is introduced in 
Section 2. The details of the proposed multi-scale convolution 
method and multi-objective learning strategy are presented. In 
Section 3, experimental results of the proposed methods are 
provided. Finally, conclusions are drawn in Section 4. 

2. Proposed Speech Denoising System 

2.1. Forward stacked TCN model 

For a standard feedforward neural network structure, it is hard 
to train a deep model with more than three hidden layers for 
speech denoising. Experiences with many visual recognition 
tasks tell us that the depth of representations is of central 
importance for achieving better model performance. In order 
to mitigate difficulties of training very deep models, a ResNet 
[15] structure was proposed to create some shortcuts for back-
propagation by employing many skip-connected residual 
blocks (ResBlocks). Inspired by this, we propose a multi-scale 
temporal DNN framework for speech enhancement task, in 
which multiple residual blocks are sandwiched between two 
dense layers, as presented in Figure 1. 

Previous research [16] has demonstrated that the widened 
architecture for residual blocks is conducive to improve the 
representation performance and speed of ResNet. Therefore, in 
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our design, both dense layers are 1024 dimensions, aiming to 
extend the input feature to a high dimensional representation. 
Dilated convolutional layer is exploited in each residual block 
to capture the speaker’s useful context information from past 
frames. The LPS features of noisy signals are extracted as the 
input of TCN model to learn clean LPS and IRM targets. In 
particular, the original noisy LPS features are stacked forward 
into each ResBlock to shorten the path of gradient propagation. 
Finally, a composite enhancement scheme is used, and the 
estimated LPS and IRM targets are combined to achieve better 
speech reconstruction in a post processing way. 

2.2. Basic residual block 

In our proposed TCN framework, ResBlock module plays an 
essential role in temporal modeling of signals. A basic residual 
block is firstly introduced to look back at a history of context 
for signal reconstruction. As shown in Figure 2, the basic 
ResBlock module is a three-layer bottleneck structure with 
skip connection. Only the middle convolutional layer uses 
dilated convolution, and the other two layers use standard 1-D 
convolutions. The kernel dimensions of three convolutional 
layers are 1 1024, 3 514, and 1 514, respectively. Their 
output channels are 257, 514, and 1024, respectively, to build 
up a widened bottleneck structure. Batch normalization [17], 
ReLU activation and dropout [18] are successively performed 
after each convolution operation. It should be noted that the 
first layer of each ResBlock module consists of two parts: a 1-
D convolutional layer and a stacked original input feature. It 
means that the manually extracted features and the network 
automatically extracted features can be combined through the 
ResBlock module for a deeper representation.  

Furthermore, using dilated convolutional layer enables the 
ResBlock module to represent a wider range of inputs: 
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Where fd and Fd(t) represent the dilated convolution kernel and 
its output, respectively, t is the frame index, d is the dilation 
factor, K is the kernel size, and Y( t d i ) accounts for the 
past frames for analysis. In order to avoid the gridding effect 
of dilated convolution [19], the choose of dilation factors 
should not be common divisors greater than 1. The skip-
connected sum operation before the non-linear activation of 
last layer allows our TCN model to learn modifications to the 
identity mapping rather than the entire transformation. 

2.3. Multi-Scale residual block 

In our real life, due to the differences of word length and 
pronunciation characteristics (such as speech speed) of 
different people, the utterances always have the feature of 

temporal scale variation. Therefore, multi-scale methods [20, 
21] have been investigated to remedy the problem of temporal 
scale variation. Using many branches with different receptive 
fields can improve the performance, but it increases the model 
size and processing burden.  

As presented in Figure 3(a), we propose a simple yet 
efficient multi-scale ResBlock module to cope with the 
temporal scale variation. Unlike those branchy approaches 
with multiple parallel filters, the multi-scale of our proposed 
method refers to the multiple available receptive fields in one 
convolutional layer:  
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Where fmd,b and Fmd,b(t) are the multi-scale dilated convolution 
kernel and its output of receptive sub-band b, respectively. 
Fmd,b-1 are the output features of the previous sub-band. In this 
paper, 8 receptive sub-bands are divided in the first layer for 
multi-scale decomposition. As shown in Figure 3(b), multi-
scale sub-band analysis is carried out in the middle layer from 
two directions. Output features of the previous sub-band are 
concatenated with the input of the next sub-band to perform 
dilated convolution operation. The number of output channels 
for each sub-band remains unchanged after each convolution. 
It should be noted that batch normalization, ReLU activation 
and dropout operations are successively performed after the 
convolution in each sub-band. This process repeats several 
times until all the divided sub-bands are analyzed. Finally, 
sum the obtained features of the two decomposition directions 
to integrate the results of the multi-scale analysis.  

Like the basic ResBlock module, the multi-scale ResBlock 
also adopts the bottleneck structure to save model parameters. 
This introduced multi-scale method can linearly increase the 
equivalent receptive field in just one dilated convolution layer, 
while reducing the parameters of each residual block by 40%. 
Thus, it is more suitable for integration into the proposed TCN 
framework to obtain deeper feature representation and richer 
contextual history for speech enhancement. 

2.4. Multi-Objective learning 

To obtain better noise reduction ability, our idea is to jointly 
optimize the loss of LPS and IRM in our TCN framework:  
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Where ˆ ( , )LPSX k t  and ˆ ( , )IRMX k t are the enhanced LPS and 
the estimated IRM, respectively. Correspondingly, ( , )LPSX k t  

 
Figure 1: Architecture of forward stacked TCN model 

for speech enhancement. 
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Figure 2: Diagram of the basic ResBlock module with 

dilated convolution. 
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and ( , )IRMX k t are their ideal targets. M and T represent the 
feature length and batch size, respectively. Joint optimization 
of different objectives is equivalent to incorporating multiple 
regularization terms for the training of TCN model. Therefore, 
in the output stage of model test, the estimated LPS features 
and IRM enhanced speech can be averaged in magnitude 
spectrum domain as the final output: 

1ˆ ˆ ˆ( exp( ) exp( ) )
2 LPS LPS IRMX X Y X̂ )IRM            (4) 

The result is then used with the noisy phase to reconstruct the 
waveform of the enhanced speech. Although the incorporation 
of dual targets leads to a slight increase in model parameters, 
the composite enhancement of both outputs can achieve their 
complementary advantages, thus better speech reconstruction. 

3. Experimental results 
3.1. Experimental setups 

The experiments below were conducted on TIMIT database 
[22], which contains 4620 training utterances and 1680 test 
utterances. Four noise recordings (Babble, Factory1, Destroyer 
engine, and Destroyer operation noises) from the NOISEX-92 
database [23] were selected to generate noisy database for 
model training. Each noise recording is about 4 minutes long. 
To construct the noisy training set, we used random cuts from 
the first 60% of each noise to mix with all training utterances 
of TIMIT database, and the mixed SNR follows the uniform 
distribution in the range of -5 to 15. Likewise, the middle 20% 
of each noise were used to mix with 280 utterances from the 
TIMIT test set to construct the validation set for model 
training. To evaluate the noise and speaker generalization 
ability of DNN models, 320 unseen utterances from the 
TIMIT test set were mixed with the last 20% of each noise to 
construct the test set of seen noise cases. Besides, two new 
noise types from NOISEX-92, namely Pink and Factory2, 
were used as the unseen noise cases for test. The short-time 
objective intelligibility (STOI) [24] and perceptual evaluation 
of speech quality (PESQ) [25] were adopted as two metrics to 
evaluate the speech denoising performance. 

As for signal analysis, all the speech and noise signals 
were resampled to 16 kHz, and the frame length was set to 512 
samples with a frame shift of 256. Thus, 257-dimensional LPS 
features were fed into DNN models for training. The Adam 
algorithm [26] was used to optimize the model parameters 
with a learning rate of 0.001 in every mini-batch. The dropout 
rate in our proposed TCN models was set to 0.2. All the input 
LPS features were normalized to zero mean and unit variance 

for model training and test. Noted that the test noisy speech 
was normalized by the global mean and variance of all 
training data to ensure the causality of our system. 

3.2. Comparison between different temporal DNN models 

To evaluate the speech denoising effect of the proposed multi-
scale TCN models in causal speech enhancement task, several 
classic DNN structures were compared experimentally. The 
evaluated PESQ and STOI results are presented in Table 1 and 
Table 2, respectively. We used an FNN model with 3 hidden 
layers of size 2048 as a baseline system without contextual 
frames (denoted as “FNN-SE”). “LSTM-SE” and “GRU-SE” 
are two widely used temporal models for speech enhancement 
with memory mechanism. Both RNN-based models contain 3 
hidden layers with 1024 neurons per layer. The proposed TCN 
models with the basic ResBlock and the multi-scale ResBlock 
are denoted as “TCN-SE” and “MSTCN-SE-1”, respectively. 
Unlike the above models that only learn a single LPS target, 
“MSTCN-SE-2” represents the multi-objective learning model 
of LPS and IRM. All the proposed TCN models stacked 5 
ResBlocks, and the dilated rate increased gradually, which 
was 1, 2, 5, 7, 11, respectively.  

From Table 1 and 2, it is observed that the temporal DNN 
methods utilizing the context information of current and past 
frames show better speech denoising effect than that of FNN-
SE modeled only in current frame. That is, the temporal 
models have better speaker and noise generalization capability 

Table 1: Averaged PESQ results obtained for noisy 
and enhanced speech in seen and unseen noise cases 

PESQ Results Input SNRs (dB) 
Noises Methods -5dB 0dB 5dB 10dB 15dB 

Seen 

Noisy 1.29 1.63 1.99 2.35 2.71 
FNN-SE 1.66 2.17 2.60 2.95 3.22 
LSTM-SE 1.74 2.24 2.63 2.92 3.14 
GRU-SE 1.75 2.24 2.62 2.92 3.14 
TCN-SE 2.02 2.44 2.73 2.95 3.10 
MSTCN-SE-1 2.03 2.50 2.84 3.10 3.30 
MSTCN-SE-2 2.06 2.49 2.84 3.14 3.40 

Unseen 

Noisy 1.32 1.68 2.06 2.45 2.81 
FNN-SE 1.53 2.05 2.50 2.87 3.16 
LSTM-SE 1.69 2.19 2.61 2.92 3.15 
GRU-SE 1.78 2.25 2.63 2.93 3.16 
TCN-SE 2.03 2.44 2.73 2.94 3.10 
MSTCN-SE-1 2.12 2.55 2.87 3.12 3.31 
MSTCN-SE-2 2.08 2.53 2.88 3.18 3.44 

               
(a)                                                                               (b) 

Figure 3: (a) Diagram of the multi-scale ResBlock module with dilated convolution. (b) Principles of the multi-scale 
decomposition in left and right direction.  
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Table 2: Averaged STOI results obtained for noisy and 
enhanced speech in seen and unseen noise cases 

STOI Results Input SNRs (dB) 
Noises Methods -5dB 0dB 5dB 10dB 15dB 

Seen 

Noisy 0.547 0.663 0.772 0.861 0.924 
FNN-SE 0.627 0.756 0.841 0.889 0.915 
LSTM-SE 0.629 0.764 0.846 0.892 0.917 
GRU-SE 0.645 0.767 0.845 0.891 0.915 
TCN-SE 0.704 0.811 0.868 0.900 0.918 
MSTCN-SE-1 0.713 0.821 0.880 0.915 0.935 
MSTCN-SE-2 0.720 0.827 0.890 0.931 0.958 

Unseen 

Noisy 0.592 0.704 0.807 0.887 0.941 
FNN-SE 0.596 0.733 0.828 0.885 0.913 
LSTM-SE 0.607 0.749 0.843 0.894 0.919 
GRU-SE 0.638 0.764 0.845 0.892 0.916 
TCN-SE 0.700 0.810 0.870 0.902 0.920 
MSTCN-SE-1 0.727 0.827 0.885 0.918 0.938 
MSTCN-SE-2 0.729 0.836 0.898 0.937 0.961 

 
than FNN-SE in speech enhancement task. Among the above 
temporal models, the three TCN models proposed in this paper 
achieve better quality and intelligibility of enhanced speech in 
both seen and unseen noise cases. In contrast to the LSTM-SE 
and GRU-SE models, our basic TCN-SE model obtains a 
notable improvement of PESQ and STOI at low SNR cases of 
-5~5 dB. The presented multi-scale TCN models refine the 
temporal analysis of speech signals, which is beneficial to 
recover more details of speech spectrum. The spectral filtering 
operation of IRM further compensates the speech distortion 
problem of LPS at high SNR cases (10~15 dB). Therefore, 
combining the benefits of IRM and LPS targets enables the 
MSTCN-SE-2 model to achieve the best PESQ and STOI 
results. 

Moreover, the model sizes of the above DNN models are 
presented in Table 3. The number of trainable parameters of 
MSTCN-SE-1 is less, only 7.4 million, while FNN-SE, 
LSTM-SE and GRU-SE are 9.5 million, 22.3 million and 16.8 
million, respectively. Multi-scale convolution contributes the 
improvement of computational efficiency and noise reduction 
ability. Although the multi-objective learning strategy slightly 
increases the trainable parameters of the MSTCN-SE-2 model, 
it guarantees better enhanced speech quality and intelligibility. 

Table 3: Model size of different DNN models 

Model 
Size 

(million) 

FNN-
SE 

LSTM-
SE 

GRU-
SE 

TCN-
SE 

MSTCN-
SE-1 

MSTCN-
SE-2 

9.5 22.3 16.8 9.8 7.4 7.7 

3.3. Comparison with previous multi-objective methods 

In this section, we compared the evaluation results of PESQ 
and STOI between our MSTCN-SE-2 model and two RNN-
based multi-target learning methods for speech enhancement. 
The results are presented in Figure 4 and 5. “LSTM-SE-MT” 
represent the LSTM-based learning method of IRM and LPS 
targets [11], and “LSTM-SE-PL” is the densely connected 
LSTM progressive learning model with 5 LPS targets [12].  

Figure 4 and 5 illustrate that the proposed MSTCN-SE-2 
consistently outperforms the other two LSTM models at all 
SNR cases. This performance superiority is more significant at 
low SNR cases (-5 and 0 dB). The LSTM network is more 

susceptible to the starting point of input, and its long-term 
dependence is easy to introduce more useless information. In 
contrast, the most important local information is considered in 
each forward stacked ResBlock module of MSTCN-SE-2 for 
speech signal analysis. In terms of model size, the trainable 
parameters of the LSTM-SE-MT and LSTM-SE-PL models 
are 14.2 million and 38.2 million, respectively, which are 
much larger than the proposed MSTCN-SE-2. It indicates that 
the proposed multi-scale dilated convolution contributes to 
more excellent temporal modeling ability for speech signals 
than the classical LSTM units, while saving more parameters. 

4. Conclusions 
This paper presents a more efficient multi-scale TCN model 
for monaural speech enhancement. A novel multi-scale dilated 
convolution method is proposed to enlarge the receptive field 
of ResBlock at a more granular level. The strategy of stacking 
input features and skip connection in each ResBlock enables 
us to train a deeper model for feature representation. Owe to 
these advantages on analyzing the contextual information of 
speakers, the proposed TCN methods exhibit better denoising 
effect and stronger model generalization than the other DNN 
temporal modeling methods. In addition, the presented multi-
objective learning architecture fully utilizes the advantages of 
LPS and IRM, and improves the robustness of the model 
under various noise damage levels.  
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