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Abstract
State-of-the-art under-determined audio source separation sys-
tems rely on supervised end to end training of carefully tailored
neural network architectures operating either in the time or the
spectral domain. However, these methods are severely chal-
lenged in terms of requiring access to expensive source level
labeled data and being specific to a given set of sources and
the mixing process, which demands complete re-training when
those assumptions change. This strongly emphasizes the need
for unsupervised methods that can leverage the recent advances
in data-driven modeling, and compensate for the lack of la-
beled data through meaningful priors. To this end, we propose a
novel approach for audio source separation based on generative
priors trained on individual sources. Through the use of pro-
jected gradient descent optimization, our approach simultane-
ously searches in the source-specific latent spaces to effectively
recover the constituent sources. Though the generative priors
can be defined in the time domain directly, e.g. WaveGAN,
we find that using spectral domain loss functions for our opti-
mization leads to good-quality source estimates. Our empirical
studies on standard spoken digit and instrument datasets clearly
demonstrate the effectiveness of our approach over classical as
well as state-of-the-art unsupervised baselines.
Index Terms: audio source separation, unsupervised learning,
generative priors, projected gradient descent

1. Introduction
Audio source separation, the process of recovering constituent
source signals from a given audio mixture, is a key compo-
nent in downstream applications such as audio enhancement
and music information retrieval [1, 2]. Typically formulated
as an inverse optimization problem, source separation has been
traditionally solved using a broad class of matrix factoriza-
tion methods [3, 4, 5], e.g., Independent Component Analysis
(ICA) and Principal Component Analysis (PCA). While these
methods are known to be effective in over-determined scenar-
ios, i.e. the number of mixture observations is greater than
the number of sources, they are severely challenged in under-
determined settings [6]. Consequently, in the recent years, su-
pervised deep learning based solutions have become popular
for under-determined source separation [7, 8, 9, 10, 11, 12].
These approaches can be broadly classified into time domain
and spectral domain methods, and often produce state-of-the-art
performance on standard benchmarks. Despite their effective-
ness, there is a fundamental drawback with supervised methods.
In addition to requiring access to large number of observations,
a supervised source separation model is highly specific to the
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given set of sources and the mixing process, consequently re-
quiring complete re-training when those assumptions change.
This motivates a strong need for the next generation of unsuper-
vised separation methods that can leverage the recent advances
in data-driven modeling, and compensate for the lack of labeled
data through meaningful priors.

Utilizing appropriate priors for the unknown sources has
been an effective approach to regularize the ill-conditioned na-
ture of source separation. Examples include non-Gaussianity,
statistical independence, and sparsity [13]. With the emergence
of deep learning methods, it has been shown that choice of
the network architecture implicitly induces a structural prior for
solving inverse problems [14]. Based on this finding, Tian et al.
recently introduced a deep audio prior (DAP) [15] that directly
utilizes the structure of a randomly initialized neural network
to learn time-frequency masks that isolate the individual com-
ponents in the mixture audio without any pre-training. Interest-
ingly, DAP was shown to outperform several classical priors.
Here, we consider an alternative approach for under-determined
source separation based on data priors defined via deep gener-
ative models, and in particular using generative adversarial net-
works (GANs) [16]. We hypothesize that such a data prior will
produce higher quality source estimates by enforcing the esti-
mated solutions to belong to the data manifold. While GAN
priors have been successfully utilized in inverse imaging prob-
lems [17, 18, 19, 20] such as denoising, deblurring, compressed
recovery etc., their use in source separation has not been studied
yet – particularly in the context of audio. In this paper, we pro-
pose a novel unsupervised approach for source separation that
utilizes multiple source-specific priors and employs Projected
Gradient Descent (PGD)-style optimization with carefully de-
signed spectral-domain loss functions. Since our approach is
an inference-time technique, it is extremely flexible and general
such that it can be used even with a single mixture. We uti-
lize the time-domain based WaveGAN [21] model to construct
the source-specific priors, and interestingly, we find that using
spectral losses for the inversion leads to superior quality results.
Using standard benchmark datasets (spoken digit audio (SC09),
drums and piano), we evaluate the proposed approach under the
assumption that mixing process is known. From our rigorous
empirical study, we find that the proposed data prior is con-
sistently superior to other commonly adopted priors, including
the recent deep audio prior [15]. The codes for our work are
publicly available.i

2. Designing Priors for Inverse Problems
Despite the advances in learning methods for audio process-
ing, under-determined source separation remains a critical chal-
lenge. Formally, in our setup, the number of mixtures or ob-
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servations m � n, i.e. the number of sources. A common
approach to make this ill-defined problem tractable is to place
appropriate priors to restrict the solution space. Existing ap-
proaches can be broadly classified into the following categories:
(i) Statistical Priors. This includes the class of matrix fac-
torization methods conventionally used in source separation.
For example in ICA, we enforce the assumptions of non-
Gaussianity as well as statistical independence between the
sources. On the other hand, PCA enforces statistical inde-
pendence between the sources by linear projection onto mutu-
ally orthogonal subspaces. KernelPCA [22] induces the same
prior in a reproducing kernel Hilbert space. Another popular
approach is Non-negative matrix factorization (NMF), which
places a non-negativity prior on the estimated basis matrices
[23]. Finally, a sparsity prior (`1) [13] placed either in the ob-
served domain or in the expansion via an appropriate basis set
or a dictionary has also been widely adopted to regularize this
problem.
(ii) Structural Priors. Recent advances in deep neural net-
work design have shown that certain carefully chosen networks
have the innate capability to effectively regularize or behave as
a prior to solve ill-posed inverse problems. These networks
essentially capture the underlying statistics of data, indepen-
dent of the task-specific training. These structural priors have
produced state-of-the-art performance in inverse imaging prob-
lems [14] and recently, Tian et al. [15] utilized the structure of
an U-Net [24] model to learn time-frequency masks that can
isolate the individual components in the mixture audio.
(iii) GAN Priors. A third class of methods have relied on priors
defined via generative models, e.g. GANs [16]. GANs can learn
parameterized non-linear distributions p(X; z) from a sufficient
amount of unlabeled data X [21, 25], where z denotes the la-
tent variables of the model. In addition to readily sampling from
trained GAN models, they can be leveraged as an effective prior
for X . Popularly referred to as GAN priors, they have been
found to be highly effective in challenging inverse problems
[19, 20]. In its most general form, when one attempts to recover
the original data x from its corrupted version x̃ (observed),
one can maximize the posterior distribution p(X = x|x̃; z) by
searching in the latent space of a pre-trained GAN. Since this
posterior distribution cannot be expressed analytically, in prac-
tice, we utilize an iterative approach such as Projected Gradi-
ent Descent (PGD) to estimate the latent features ẑ followed by
sampling from the generator, i.e p(X; z = ẑ).
Proposed Work. In this work, we propose to utilize GAN pri-
ors to solve the problem of under-determined source separation.
Existing solutions with data priors utilize a single GAN model
to perform the inversion process [20]. However, by design,
source separation requires the simultaneous estimation of mul-
tiple disparate source signals. While one can potentially build a
generative model that can jointly characterize all sources, it will
require significantly large amounts of data. Hence, we advocate
the use of source-specific generative models and generalizing
the PGD optimization with multiple GAN priors. In addition
to reducing the data needs, this approach provides the crucial
flexibility of handling new sources, without the need for re-
training the generative models for all sources. From our study,
we find that utilizing multiple GAN priors {Gi|i = 1 . . .K}
to be highly effective for under-determined source separation.
In particular, we choose a popular waveform synthesis model
WaveGAN [21] as our GAN prior Gi as we found the generated
samples to be of high perceptual quality. While we utilize time
domain GAN prior models, we find that spectral domain loss
functions are critical in source estimation using PGD.

Figure 1: An overview of the proposed unsupervised source sep-
aration system.

3. Approach
Audio source separation involves the process of recovering con-
stituent sources {si ∈ Rd|i = 1 · · ·K} from a given audio mix-
ture m ∈ Rd, where K is the total number of sources and d is
the number of time steps. In this paper, without loss of general-
ity, we assume the source and mixtures to be mono-channel and
the mixing process to be a sum of sources i.e., m =

∑K
i=1 si.

Figure 1 provides an overview of our proposed approach for un-
supervised source separation. Here, we sample the source audio
from the respective priors and perform additive mixing to recon-
struct the mixture i.e, m̂ =

∑K
i=1 Gi(zi). The mixture is then

processed to obtain the corresponding spectrogram. In addition,
we also compute the source level spectrograms. We perform
source separation by efficiently searching the latent space of the
source-specific priors Gi using Projected Gradient Descent op-
timizing a spectral domain loss function L. More formally, for
a single mixture m, our objective function is given by,

{z∗i }Ki=1 = arg min
z1,z2...zK

L(m̂,m) +R({Gi(zi)}), (1)

where the first term measures the discrepancy between the true
and estimated mixtures and the second term is an optional reg-
ularizer on the estimated sources. In every PGD iteration, we
perform a projectionP , where we constrain the {zi}Ki=1 to their
respective manifolds. Upon completion of this optimization, the
sources can be obtained as ŝ∗i = Gi(z∗i ),∀i. Here, we refor-
mulate the process of source separation by first estimating the
source-specific latent features z∗i followed by sampling from
the respective generators. There are two key ingredients that
are critical to the performance of our approach: (i) choice of
a good quality GAN Prior for every source and (ii) carefully
chosen loss functions to drive the PGD optimization. We now
elaborate our methodology in the rest of this section.

3.1. WaveGAN for Data Prior Construction

WaveGAN [21] is a popular generative model capable of syn-
thesizing raw waveform audio. It has exhibited success in pro-
ducing audio from different domains such as speech and mu-
sical instruments. Both the generator and discriminator of the
WaveGAN model are similar in construction to DCGAN [25]
with certain architectural changes to support audio generation.
The generator G transforms the latent features z ∈ Rdz where
dz = 100 from a uniform distribution in [−1, 1], to produce
waveform audio G(z) of dimension d = 16384 which is approx-
imately of 1s duration at a sampling rate of 16kHz. The discrim-
inator D regularized using phase shuffle learns to distinguish
between the real and synthesized samples. The WaveGAN is
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Algorithm 1: Proposed Approach.
Input: Unlabeled mixture m, No. of sources K,

Pre-trained GAN Priors {Gi}i=1...K

Output: Estimated sources {ŝ∗i }i=1...K

Initialization: {ẑi}i=1...K = 0 ∈ Rdz

for n← 1 to N do
m̂ =

∑K
i=1 Gi(ẑi)

Compute source level and mixture spectrograms
Compute loss L using 6
ẑi ← ẑi − η∇z(L) ∀i = 1 . . .K
ẑi ← P(ẑi) P projects {zi}i=1...K onto the

manifold, i.e., clipped to [−1, 1]
end
return {ŝ∗i } = Gi(z∗i ),∀i

trained to optimize the Wasserstein loss with gradient penalty
(WGAN-GP) as prescribed in [26].

Given the ability of WaveGAN to synthesize high quality
audio, the pre-trained generator of WaveGAN was used to de-
fine the GAN Prior. In our formulation, instead of using a single
GAN Prior trained jointly for all sources, we construct K inde-
pendent source-specific priors.

3.2. Losses

In order to obtain high-quality source estimates using GAN pri-
ors, we propose a novel yet intuitive combination of spectral-
domain losses. Though one can utilize time-domain metrics
such as the Mean-Squared Error (MSE) to compare the ob-
served and synthesized mixtures, we find that even small vari-
ations in the phases of sources estimated from our priors can
lead to higher error values. This in turn can misguide the PGD
optimization process and may lead to poor convergence. This
corroborates with the findings in [27].

3.2.1. Multiresolution Spectral Loss (Lms)

This loss term measures the `1-norm between log magnitudes
of the reconstructed spectrogram and the input spectrogram at
L spatial resolutions. This is used to enforce perceptual close-
ness between the two mixtures at varying spatial resolutions.
Denoting m as the input mixture and m̂ as the estimated mix-
ture, the loss Lms is defined as

Lms =

L∑
l=1

∥∥∥∥ log(1 + |STFT l(m)|2)

− log(1 + |STFT l(m̂)|2)

∥∥∥∥
1

, (2)

where |STFT l(.)| represents the magnitude spectrograms at
the lth spatial resolution and L = 3. We compute the magni-
tude spectrogram at different resolutions by performing a sim-
ple average pooling operation with bilinear interpolation.

3.2.2. Source Dissociation Loss (Lsd)

Minimizing this loss, defined as the aggregated gradient similar-
ity between the spectrograms of the estimated sources, enforces
them to be systematically different. Similar to [15, 28], we de-
fine this as a product of the normalized gradient fields of the
log magnitude spectrograms computed at L spatial resolutions.
In the case where there are K constituent sources, we compute

Figure 2: Demonstration of our proposed approach using a
digit-drum example. Through the use of multiple GAN Priors
Gi, our algorithm efficiently searches the source-specific latent
spaces to estimate the underlying sources.

this between every pair of sources. Formally,

Lsd =

K∑
i=1

K∑
j=i+1

L∑
l=1

||Ψ(log(1 + |STFT l(Gi(ẑi))|2),

log(1 + |STFT l(Gj(ẑj))|2))||F , (3)

where Ψ(x, y) = tanh(λ1|∇x|) � tanh(λ2|∇y|). (� repre-
sents element-wise multiplication) and L = 3. The weights λ1

and λ2 are set at λ1 =

√
|∇y|F√
|∇x|F

and λ2 =

√
|∇x|F√
|∇y|F

.

3.2.3. Mixture Coherence Loss (Lmc)

Along with Lms, this loss, defined using gradient similarity
between original and reconstructed mixtures, ensures that our
PGD optimization produces meaningful reconstructions:

Lmc = −
L∑

l=1

||Ψ(log(1 + |STFT l(m)|2),

log(1 + |STFT l(m̂))|2))||F (4)

3.2.4. Frequency Consistency Loss (Lfc)

This loss helps improve perceptual similarity between the mag-
nitude spectrograms of the input and synthesized mixtures by
constraining components within a particular temporal bin of
the spectrograms to remain consistent over the entire frequency
range, i.e.,

Lfc =

T∑
t=1

F∑
f=1

log(1 + |STFT (m)[t, f ]|)
log(1 + |STFT (m̂)[t, f ]|) . (5)

The overall loss function for our source separation algorithm is
thus obtained as:

L = β1Lms + β2Lsd + β3Lmc + β4Lfc (6)

Through hyperparameter search we identified that β1 =
0.8, β2 = 0.3, β3 = 0.1, β4 = 0.4 to be effective in our exper-
iments. Note, in our computations we obtain the spectrograms
by computing the Short Time Fourier Transform (STFT) on the
waveform in frames of length 256, hop size of 128 and FFT
length of 256. The procedure for our approach is showed in Al-
gorithm 1. Figure 2 illustrates the progressive estimation of the
unknown sources using our approach.
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Table 1: Performance metrics averaged across 1000 cases for
the Digit-Piano (K = 2) experiment (While higher Spectral SNR
and SIR are better, lower RMS Env.Distance is better).

Method Spectral SNR (dB) RMS Env. Distance SIR (dB)
Digit Piano Digit Piano Digit Piano

FastICA -2.13 -13.45 0.22 0.61 -4.12 -0.66
PCA -2.04 -12.01 0.22 0.54 -4.13 -1.44

Kernel PCA -2.04 -3.30 0.22 0.26 -4.13 -1.61
NMF -2.21 -5.80 0.23 0.26 -4.09 2.53
DAP -1.77 2.72 0.22 0.22 2.20 -3.10

Proposed 1.06 2.73 0.17 0.21 3.91 8.57

Table 2: Performance metrics averaged across 1000 cases for
the Drums-Piano (K = 2) experiment.

Method Spectral SNR (dB) RMS Env. Distance SIR (dB)
Drums Piano Drums Piano Drums Piano

FastICA -5.25 -13.52 0.24 0.61 -6.51 -1.45
PCA -5.19 -12.33 0.24 0.56 -6.53 -2.69

Kernel PCA -5.19 -3.36 0.24 0.25 -6.53 -2.02
NMF -5.39 -5.84 0.24 0.26 -6.59 3.84
DAP -4.20 2.97 0.22 0.21 -21.62 11.22

Proposed 0.84 3.06 0.10 0.21 11.70 9.80

Table 3: Performance metrics averaged across 1000 cases for
the Digit-Drums (K = 2) experiment.

Method Spectral SNR (dB) RMS Env. Distance SIR (dB)
Digit Drums Digit Drums Digit Drums

FastICA 2.91 -21.01 0.13 0.82 3.10 0.09
PCA 2.99 -20.00 0.13 0.77 3.12 0.02

Kernel PCA 2.99 -10.53 0.13 0.35 3.12 0.85
NMF 3.01 -13.75 0.13 0.39 3.20 -0.98
DAP 3.59 0.92 0.14 0.14 4.24 -11.48

Proposed 2.32 0.42 0.15 0.10 25.91 23.68

4. Empirical Evaluation
In this section, we evaluate our proposed approach on two
source and three source separation experiments on the pub-
licly available Spoken Digit (SC09), drum sounds and piano
datasets. The SC09 dataset is a subset of the Speech Commands
dataset [29, 21] containing spoken digits (0-9) each of duration
∼ 1s at 16kHz from a variety of speakers recorded under differ-
ent acoustic conditions. The drum sounds dataset [21] contains
single drum hit sounds each of duration ∼ 1s at 16kHz. The
piano dataset [21] contains piano music (Bach compositions)
each of duration (> 50s) at 48kHz.
WaveGAN Training. Following [21], we train WaveGAN
models on normalized 1s slices (i.e d =16384 samples) of
the SC09 (Digit), Drums and Piano train datasets resampled to
16kHz respectively. All the models were trained using batches
of size 128. The generator and discriminator were optimized
using the WGAN-GP loss with the Adam optimizer and learn-
ing rate 1e−4 for 3000 epochs. The trained generator models
were used to construct the GAN priors.
Setup. For the task of two source separation (K = 2), we con-
ducted experiments on three possible mixture combinations: (i)
Digit-Piano, (ii) Drums-Piano and (iii) Digit-Drums. In order
to create the input mixture for every combination, we randomly
sampled (with replacement) normalized 1s audio slices from the
respective test datasets, and obtained 1000 mixtures through a

Table 4: Performance metrics averaged across 1000 cases for
the Digit-Drums-Piano (K = 3) experiment.

Metric Source FastICA PCA Kernel PCA NMF Proposed

Spectral SNR (dB)
Digit -2.95 -2.47 -2.47 -2.47 0.77

Drums -10.8 -19.81 -8.1 -12.84 0.64
Piano 0.27 0.1 -0.94 4.94 2.64

RMS Env. Distance
Digit 0.24 0.23 0.23 0.23 0.17

Drums 0.4 0.75 0.28 0.37 0.1
Piano 0.23 0.31 0.25 0.15 0.21

SIR (dB)
Digit -4.73 -5.06 -5.06 -5.01 3.02

Drums -6.48 -5.51 -1.65 -5.69 10.21
Piano 0.53 2.21 -3.87 2.60 5.12

simple additive mixing process. Similarly, we obtained 1000
mixtures for the case of K = 3, i.e., on the combination, Digit-
Drums-Piano. In each case, we performed the PGD optimiza-
tion using Eqn.6 for N = 1000 iterations with the ADAM op-
timizer and learning rate of 5e−2 to infer source specific latent
features {z∗i }i=1...K . The estimated sources are then obtained
as {Gi(z∗i )}i=1...K . Though the choice of initialization for zi
is known to be critical for PGD optimization [20], we find that
setting {zi}i=1...K = 0 ∈ Rdz to be effective.

Evaluation Metrics. Following standard practice, we used
three different metrics - (i) mean spectral SNR [30, 31], a mea-
sure of the quality of the spectrogram reconstruction; (ii) mean
RMS envelope distance [32] between the estimated and true
sources; and (iii) mean signal-interference ratio (SIR) [33] to
quantify the interference caused by one estimated source on an-
other.

Results. Tables 1, 2, 3 and 4 provide a comprehensive com-
parison of the proposed approach against the standard base-
lines (FastICA, PCA, KernelPCA, NMF) [34] as well as with
the state-of-the-art unsupervised Deep-Audio-Prior [15]. It can
be observed that our approach significantly outperforms all the
baselines in most cases, except for the Digits-Drums experi-
ment where our method is in par with DAP. These results indi-
cate the effectiveness of our unsupervised approach on complex
source separation tasks. We find that the spectral SNR metric,
which is relatively less sensitive to phase differences [27, 30],
is consistently high with our approach, indicating high percep-
tual similarities between estimated and the ground truth audio.
We also find lower envelope distance estimates, further empha-
sizing the perceptual quality of our estimated sources. Finally,
we attribute the significant improvements in the SIR metric to
the source dissociation loss (Lsd), which enforces the estimated
sources from the priors to be systematically different.

5. Conclusions
In summary, we find that source-specific GAN Priors are ef-
fective in recovering the constituents of an unlabeled mixture,
often significantly outperforming unsupervised state-of-the-art
benchmarks. Additionally, we find that such generative pri-
ors can be further improved with PGD-style optimization us-
ing carefully designed spectral domain loss functions. Our ap-
proach is highly flexible because it is entirely an inference-time
technique, and as a result can efficiently deal with varying num-
ber of known sources in a given mixture. This is in contrast
with standard supervised approaches which require re-training
or extensive fine-tuning. Future extensions to our work include
performing source separation when the mixing process is un-
known, and dealing with mixtures that contain novel sources.
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