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Abstract
In this paper, we focus on the task of small-footprint key-

word spotting under the far-field scenario. Far-field environ-
ments are commonly encountered in real-life speech applica-
tions, causing severe degradation of performance due to room
reverberation and various kinds of noises. Our baseline system
is built on the convolutional neural network trained with pooled
data of both far-field and close-talking speech. To cope with the
distortions, we develop three domain aware training systems,
including the domain embedding system, the deep CORAL sys-
tem, and the multi-task learning system. These methods incor-
porate domain knowledge into network training and improve the
performance of the keyword classifier on far-field conditions.
Experimental results show that our proposed methods manage
to maintain the performance on the close-talking speech and
achieve significant improvement on the far-field test set.
Index Terms: small footprint keyword spotting, far-field con-
dition, domain aware training, multi-task learning

1. Introduction
Small footprint keyword spotting (KWS), also known as wake-
up word detection, is a task to detect the occurrences of a pre-
defined keyword in continuous speech signals. With the rapid
development of mobile devices, smart speakers, and other ap-
plications, which require a hands-free conversational interface,
this technology is attracting more and more attention. Different
from the traditional keyword spotting task, with the constraints
of hardware, real-life wake-up word detection must have a small
memory and low computational cost. And simultaneously, it
also requires to be highly accurate in detection and robust in
different complex environments like noisy and far-field condi-
tions.

Traditional approaches [1, 2] on this task involve Hidden
Markov Models (HMMs), which are utilized to construct the
keyword model and the filler/background model. The back-
ground model is trained with non-keyword speech as well as
background noise and silence. The acoustic modeling schemes
for speech units include Gaussian Mixture Model (GMM),
Deep Neural Network (DNN), and Time-Delayed Neural Net-
work (TDNN) [2], and so on. After training, the Vertibi search
is applied to find the optimal path in the decoding graph. When-
ever the likelihood ratio of the keyword vs. filler model is larger
than the pre-defined threshold, the system triggers.

In recent years, many researchers focus on the DNN based
keyword spotting systems, which achieve better performances
than traditional methods [3–11]. In these approaches, a DNN
model is trained for words instead of phonemes. The output
smoothed posterior probabilities are calculated later from the
DNN model’s output to compute the confidence score. DNN
based methods have the advantages of light-weighting and low
latency, which is suitable for real-life applications. As for

modeling, many structures based on Convolutional Neural Net-
work (CNN) [3], Recurrent Neural Network (RNN), Convolu-
tional Recurrent Neural Network (CRNN) [4], Long Short Time
Memory [5] (LSTM) and attention mechanism [8, 9] are ex-
plored. Furthermore, [10] adopts the residual network structure
to classify the speech command words, and [11] introduces a
dilated convolutional structure to model the whole keyword se-
quence, which also shows good performance.

However, in many real-life applications, like smart speak-
ers, the performance of the KWS system is often degraded un-
der the low Signal-to-Noise Ratio (SNR) and far-field condi-
tions. The room reverberation and different kinds of noises in
this scenario impose great challenges on the performance of the
DNN model, which is trained mainly by close-talking data due
to the zero or limit resource for real data collection. A tradi-
tional method to tackle this problem is to train DNN models
using pooled speech data either collected or simulated from dif-
ferent environments.

In this paper, we employ three domain aware training mech-
anisms to improve network performance under far-field condi-
tions. The first method is motivated by the noise-robust train-
ing with environmental noise embeddings [12,13] in the speech
recognition area. We pre-train a domain classifier to extract en-
vironmental domain embeddings, which are fused to the train-
ing of the keyword classifier. And the second method is inspired
by the within-sample variability-invariant loss [14] and paral-
leled data training [15–17] mechanisms successfully applied in
speaker verification and automatic speech recognition on com-
plex environments. We propose a training scheme of multi-task
learning [18] with the CORAL loss on KWS, which reduces the
mismatch of close-talking and far-field conditions in a multi-
domain joint learning setup. The third method is based on the
multi-task learning [19, 20], which optimizes models to make
predictions on both domain types and keywords simultaneously.

This rest of the paper is organized as follows. Section 2
describes the framework of the CNN based KWS system, and
in section 3, our proposed domain aware training approaches
are introduced. Section 4 discusses the experimental results,
and section 5 concludes our work, respectively.

2. CNN based KWS system
Our baseline is constructed on a CNN based KWS system pro-
posed by [3]. The pipeline has three main components, feature
extraction, network prediction, and confidence computation. In
the step of feature extraction, we extract 40-dimensional log-
Mel filterbank energy (Fbank) with a 25ms window and a 10 ms
shift. And we apply a window of 40 frames to generate training
samples as the input of the model considering the context.

Our convolutional network structure contains three convo-
lutional layers, each of which is followed by a max-pooling
layer. The convolutional kernels have the size of (3, 3) with
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Figure 1: Framework of the domain embedding system.

the stride of (1, 1), and the pooling size is set to be (2, 2). Two
fully-connected layers accompanied by a final softmax activa-
tion layer are then used to predict the target keywords. Rectified
linear unit (ReLU) is used as the activation function in hidden
layers.

After the training process, the sequence of acoustic features
is projected to a posterior probabilities sequence of keywords
by the model. In the module of confidence computation, we
adopt the method proposed in [6, 21] to make the decisions. In
this approach, we define a sliding window with the length of
Ts frames which is used to compute scores and denote the in-
put acoustic features in a window as x = {x1,x2, · · ·xTs}.
w = {w1, w2 · · ·wM} represents the words sequence of the
pre-defined wake up word. We smooth the output probabilities
at a length of L frames by taking average as

swi(xt) =
1

L

t∑
j=t−L−1

pwi(xj), (1)

where swi(xt) represents the smoothed probablities at time
t of word wi and pwi(xj) refers to the network output of jth

frame at word wi. After smoothing, we compute the confidence
score as follows:

h(x) =

[
max

1≤t1<···<tM≤Ts

M∏
i=1

swi(xti)

] 1
M

, (2)

where h(x) refers to the output confidence score. Compared
to previous methods [1], it has the advantage of considering the
order of words that trigger, and at the same time, the time com-
plexity is O(MTs), which is suitable for the real-time applica-
tion. The system triggers whenever the confidence score exceed
the pre-defined threshold.

3. Domain Aware Training
The influence of far-field and noisy conditions in speech sig-
nal processing is commonly noticed in many areas like speech
recognition and speaker verification. In our works, we apply
three domain aware training algorithms on the far-field small-
footprint keyword spotting to enrich the knowledge on domains
of models. The first algorithm introduces environmental do-
main embeddings to the keyword classifier. The second method
applies correlation alignment loss to reduce the distortion of far-
field speech. We also employ multi-task learning to predict key-
words and domains simultaneously.

3.1. Environmental Domain Embeddings

In this subsection, we illustrate our approach that optimizes
models with environmental domain embeddings derived from
a pre-trained domain classifier. This method is inspired by [12],

which explicitly learns the environmental knowledge with the
introduction of noise embeddings to the acoustic model. In this
paper, we extend this approach to the far-field word-level mod-
eling task.

Our structure consists of two models: a domain classifier
and a keyword classifier. Our domain classifier is optimized
with the keyword speech samples recorded from different dis-
tances, including 0.25M, 1M, and 3M, which refers to different
domain types. The classifier is constructed with a two-layer
stacked LSTM structure, followed by an average pooling layer
and a final linear layer. Domain embeddings are extracted from
the output of the pooling layer. Through this structure, the
acoustic features are transformed into a fix-dimensional repre-
sentation with domain knowledge.

On the base of our CNN model, our keyword classifier is
optimized with keyword speech samples and their environmen-
tal domain embeddings. Specifically, we extract the acoustic
features from the speech and project them to embeddings with
the pre-trained domain classifier. And then, the embeddings are
concatenated to the output of the penultimate fully-connected
layer. The concatenated features are finally fed into a linear
layer for the keyword prediction. To further investigate where
to concatenate, we also join the embeddings to the output of the
last convolutional layer. Figure 1 illustrates the overall architec-
ture.

3.2. Correlation Alignment

The mismatch of inner-class feature distributions on different
domains contributes to the degradation of prediction perfor-
mance. Focusing on this scenario, we apply the CORAL loss
to constrain the embedding feature distortions from different
domains in the manner of multi-task learning. In our case, we
define the penultimate layer of the neural network as our feature
layer for alignment loss computation.

CORAL is proposed to align the second-order statistics of
the source and target distributions. [22] extend this work to
DNN approaches by constructing a differentiable loss functions,
which can be used to minimize the distance between outputs of
embedding feature layer from different domains. Suppose the
embedding features from source and target domains as DS and
DT . And we denote the dimension of the feature layer as d and
the covariance matrices of source and target features areCS and
CT , respectively. The CORAL loss can then be defined as

lCORAL =
1

4d2
‖CS − CT ‖2F , (3)

where ‖·‖2F denotes the squared matrix Frobenius norm. The
covariance matrices of the source and target features [22] are

CS =
1

nS − 1
(D>SDS −

1

nS
(1>DS)

>(1>DS)), (4)
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Figure 2: Framework of the CORAL system.

CT =
1

nT − 1
(D>TDT −

1

nT
(1>DT )

>(1>DT )), (5)

where nS and nT represent the number of training samples of
source and target domains. 1 refers to a column vector of all 1
elements.

In our work, we compute alignment loss on the outputs of
the penultimate layer of the CNN network. Data from three dif-
ferent domains of 0.25m, 1m, and 3m are pooled together for
training, and there are several strategies for the loss computa-
tion:

1. L = Lce + λLcoral(E0.25M , E1M )

2. L = Lce + λLcoral(E0.25M , E3M )

3. L = Lce + λLcoral(E0.25m, E1M&3M )

4. L = Lce + λ(Lcoral(E0.25M , E1M ) +
Lcoral(E0.25M , E3M ))/2

5. L = Lce + λ(Lcoral(E0.25M , E1M ) +
Lcoral(E0.25M , E3M ) + Lcoral(E1M , E3M ))/3

λ is the hyper-parameters representing the weight of align-
ment loss. The cross-entropy loss Lce is calculated with the
logits of data from both the source and target domains. E0.25M ,
E1M and E3M refers to the embedding features used for
CORAL calculation. E1M&3M means that the 1M and 3M
data are regarded as a group. By minimizing the joint loss,
the inner-class embedding feature variabilities between close-
talking and far-field domains would be reduced. Figure 2 illus-
trated the whole framework.

3.3. Multi-task learning
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Figure 3: Framework of the MTL system.

Multi-task learning (MTL) is a mechanism that simultane-
ously optimizes the models to learn more than one task with a

Table 1: MOS of data from different domains

0.25m 1m 3m

MOS 2.698 2.022 1.375

joint loss function. This method has been successfully applied
in many speech-related tasks. In [12], it is implemented to clas-
sify the phonemes and the noise environments to improve the
robustness of models toward noisy conditions. Inspired by this
work, we perform the MTL algorithm to classify the domains
and keywords simultaneously.

Figure 3 illustrate our MTL approach. On the base of the
baseline CNN structure, an additional fully-connected layer is
designed to predict the domain types. The output of the penul-
timate linear layer serves as a compressed representation with
both word and domain information. The previous layers share
the weights and are optimized jointly. In the training phase,
we calculate the joint cross-entropy with the logits of both the
domain and keyword classification. While decoding, only the
prediction of keywords is computed.

4. Experimental results
4.1. Data

Our proposed work is evaluated on a subset of the DMASH
dataset [23], which is first proposed for the INTERSPEECH
2020 Far-Field Speaker Verification Challenge [23]. It contains
audio of a wake-up word consisting of four Chinese charac-
ters, ”ni hao, mi ya” (”Hello, Mia” in English) and other sen-
tences that can be utilized as negative data. This dataset in-
cludes the speech data recorded by iPhone, Android, micro-
phones, and microphone arrays from various distances. We uti-
lize the recordings of the iPhone from a distance of 0.25m, 1m,
and 3m, covering 222 speakers in the training set and 41 speak-
ers in the test set. In our experiment, the 0.25m environment
is regarded as close-talking (source domain), and 1m and 3m
conditions, are viewed as far-field (target domain). See Table 2
for more details of dataset statistics. To objectively measure the
data quality, we employ the P.563 algorithm [24] on the audio
of different distances. Table 1 illustrate the mean opinion score
(MOS) results.

4.2. Experiment setup

We determine target word labels by force-alignment with an
LVCSR system trained with the AISHELL-2 dataset [25]. Here,
for keyword ”ni hao, mi ya”, we find out the ending time of
”ni”, ”hao”, and ”mi”, and include its previous 20 frames and
next 20 frames to construct a window of 40 frames. Log fbank
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Table 2: Dataset statistics.

utterances positive negative

0.25m 178k 19k 159k
Train 1m 146k 15k 131k

3m 143k 15k 128k

0.25m 37k 4k 33k
Evaluation 1m 32k 4k 28k

3m 31k 4k 27k

is adopted as our input acoustic features. The baseline system
is trained with cross-entropy loss. Stochastic gradient descent
with Nesterov momentum is selected as the optimizer. The
learning rate is first initialized as 0.01 and decreases by a factor
of 0.1 when the training loss plateau. We train the CNN model
for 100 epochs with a batch size of 128 and employ early stop-
ping when the training loss is not decreasing. In the evaluation
period, we use a sliding window of 100 frames to compute the
confidence score.

As the baseline system, we pool data from both close-
talking and far-field conditions for training. In our experi-
ments, for deep CORAL training, we set the weight λ to 0.2,
0.4, 0.6, 0.8, and 1.0, respectively. In our preliminary exper-
iments, we find out that 0.8 is a suitable parameter, so our
experiments on the CORAL loss are done under this weight.
For MTL training, after the preliminary experiments with λ =
{0.1, 0.2, 0.3, 0.4, 0.5}, we observe that the system achieves
the best overall performance when λ = 0.2.

The performance is measured with the false reject (FR) rate
under one false alarm (FA) per hour.

4.3. Results

Table 3: Performance of the baseline system (the false reject
(FR) rate (%) under one false alarm (FA) per hour)

Training set 0.25M 1M 3M

Only 0.25M 1.29 2.91 11.6
Only 1M 2.03 1.58 7.77
Only 3M 10.9 8.00 10.6

Mix of 0.25M and 1M 0.91 1.38 6.06
Mix of 0.25M and 3M 1.54 1.97 5.60

Mix of all distances 1.41 1.64 6.33

The performance of the baseline system is illustrated in Ta-
ble 3. From the results, we can obtain the following observa-
tions. First, with the increase of recording distance, the distor-
tion becomes severer, and the performance of the baseline sys-
tem degrades. Second, for the 0.25M and 1M datasets, when the
training set and test set are from the same domain, the system
performs better than the scenarios of domain mismatch. The
network trained with only 3M datasets shows poor performance
in every test set. Third, pooling the close-talking domain and
target domain training data helps improve the performance on
the target domain’s test set. And the performance of the close-
talking condition can still be maintained. The system trained
with data from all fields has a balanced performance, while it is
worse than the models trained with its target domains.

The results of our proposed system are shown in Table
4. The EMB1 system represents the system that concatenates
domain embeddings to the output of the penultimate linear
layer. And the EMB2 system concatenates to the output of the
last convolutional layer. The CORAL1 to CORAL5 systems

Table 4: Performances of models trained with different methods
on the test sets

Model name 0.25M 1M 3M

EMB1 1.11 1.59 4.99
EMB2 1.21 1.02 4.11

CORAL1 1.37 1.05 4.69
CORAL2 1.19 1.41 5.02
CORAL3 1.09 1.52 5.97
CORAL4 1.27 1.47 5.21
CORAL5 1.21 1.41 4.78

MTL 1.70 1.44 5.15

denotes the five different CORAL calculating approaches de-
scribed in section 3. From the table, we can have the following
findings. 1) In the domain embedding approaches, the EMB2
system outperforms the EMB1 system on the far-field condi-
tions. The concatenation of embeddings in an early stage of
the network helps the network better learn the domain infor-
mation from the embeddings. 2) Among the CORAL systems,
the CORAL1 system produces the best results on the far-field
conditions. The CORAL2 system obtains worse scores than
the CORAL1 system, which indicates that this method is sen-
sitive to the domain types. From the results of the CORAL3
and CORAL4, we can see that regarding 1M and 3M datasets
as a group are unhelpful to classification. The CORAL5 sys-
tem calculates the CORAL loss for each pair of domains and
achieves balanced results. 3) The MTL system obtains satis-
fying improvement on far-field speech while it has a relatively
large degradation on the close-talking set.

Comparing different algorithms, we can find that systems
based on domain embeddings achieve the best improvement,
and the CORAL systems also outperform the baseline system
on the far-field conditions. The CORAL system has the ad-
vantage that it does not require any extra network structures.
The domain embedding system has an additional domain clas-
sifier, which increases the number of network parameters and
the complexity of decoding computation. The MTL method is
not as effective as the other two approaches.

5. Conclusions
In this paper, we concentrate on the task of small-footprint key-
word spotting under the far-field environment. Far-field envi-
ronments are commonly noticed in real-life speech applications,
and it causes serve degradation of performance due to room re-
verberation and various kinds of noises. To cope with the dis-
tortions, we employ three domain aware training schemes, in-
cluding learning with domain embeddings, with the CORAL
loss, and MTL with inputs from different domains of data. Ex-
perimental results show that our methods manage to maintain
the performance on the close-talking test dataset and achieve
significant improvement in far-field conditions. Approaches
with domain embeddings deliver the best performance while
increasing the model size and computing cost. The CORAL
systems also outperform the baseline system without changing
the model structure, while it is sensitive to the domain types of
data. The MTL approach is less effective than the other two
methods.
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