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Abstract

This paper investigates the use of deep convolutional spik-
ing neural networks (SNN) for keyword spotting (KWS) and
wakeword detection tasks. The brain-inspired SNN mimic the
spike-based information processing of biological neural net-
works and they can operate on the emerging ultra-low power
neuromorphic chips. Unlike conventional artificial neural net-
works (ANN), SNN process input information asynchronously
in an event-driven manner. With temporally sparse input infor-
mation, this event-driven processing substantially reduces the
computational requirements compared to the synchronous com-
putation performed in ANN-based KWS approaches. To ex-
plore the effectiveness and computational complexity of SNN
on KWS and wakeword detection, we compare the performance
and computational costs of spiking fully-connected and convo-
lutional neural networks with ANN counterparts under clean
and noisy testing conditions. The results obtained on the Speech
Commands and Hey Snips corpora have shown the effectiveness
of the convolutional SNN model compared to a conventional
CNN with comparable performance on KWS and better per-
formance on the wakeword detection task. With its competitive
performance and reduced computational complexity, convolu-
tional SNN models running on energy-efficient neuromorphic
hardware offer a low-power and effective solution for mobile
KWS applications.

Index Terms: spiking neural networks, keyword spotting,
wakeword detection, tandem learning, deep learning

1. Introduction

Accurate and efficient keyword spotting (KWS) is indispens-
able in developing robust voice interfaces for low-power mo-
bile devices and smart home appliances. KWS systems using
deep artificial neural networks (ANN) have made the integra-
tion of such voice interfaces into commercial products viable on
account of their remarkable performance [1-4]. The improved
performance comes with increased computational requirements
often due to the time-synchronous processing of input audio sig-
nals. Several techniques have been proposed to reduce the com-
putational and memory load of ANN by reducing the number of
model parameters [5-8].

The biologically plausible spiking neural networks (SNNs)
have attracted great interest in recent years [9]. Their asyn-
chronous and event-driven information processing resembles
the computing paradigm observed in human brain, whereby the
energy consumption matches to the activity level of the sen-
sory stimuli. Given temporally sparse information transmit-
ted via speech signals, the event-driven computation framework
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yields tremendous computational efficiency compared to the
synchronous computations performed in ANN.

As a non-von Neumann computing paradigm, the neuro-
morphic computing (NC) implements the event-driven compu-
tation of biological neural systems with SNNs in silicon. The
emerging NC architectures [10, 11] leverage on the massively
parallel, low-power computing units to support spike-based in-
formation processing. The design of co-located memory and
computing units effectively circumvents the von Neumann bot-
tleneck of low-bandwidth between memory and the processing
units [12]. Therefore, integrating the algorithmic power of deep
SNNs with the compelling energy efficiency of NC hardware
represents an attractive solution for always-on applications such
as the wakeword detection.

Due to the discrete and non-differentiable nature of spike
generation, the powerful error backpropagation algorithm is not
directly applicable to the training of deep spiking neural net-
work. Recently, considerable research efforts are devoted to
addressing this problem and the resulting learning rules can be
broadly categorized into the SNN-to-ANN conversion [13-16],
back-propagation through time with surrogate gradient [17-22],
constraint-then-train [23, 24], and tandem learning [25].

Despite several successful attempts on the large-scale im-
age classification tasks with deep SNNs [14-16,25], speech ap-
plications with SNN just to emerge. The first system using a
fully-connected two-layer SNN model for KWS on six common
words from the TIMIT speech dataset is described in [26]. A
detailed benchmarking of keyword spotting efficiency on con-
ventional and neuromorphic devices including a CPU, a GPU,
Nvidia’s Jetson TX1 accelerator and Intel’s Loihi neuromorphic
chip is presented in [27]. A recent work of Blouw et al. [28]
gives an overview of event-driven signal processing with exper-
imental findings on the Speech Commands dataset.

Recently, we have proposed an SNN-based large-
vocabulary automatic speech recognition (ASR) system [29].
Motivated by the promising results on the ASR system, we ap-
ply the same tandem learning framework to train SNN-based
KWS and wakeword detection systems in this work, and present
a comparison of fully-connected and convolutional SNN mod-
els with their ANN counterparts in terms of their performance
and computational efficiency. To the best of authors’ knowl-
edge, this is the first work on the application of deep convolu-
tional SNN models to KWS and wakeword detection tasks.

2. System Description
2.1. Spiking Neuron Model

As shown in Figure 1, the spiking neuron operates asyn-
chronously and integrates the incoming spike trains into its
membrane potential. An output spike is generated from the
spiking neuron whenever its membrane potential crosses the fir-
ing threshold, and this output spike will be propagated to the
connected neurons via the axon. The SNNs are constructed by
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Figure 1: lllustration of the spiking neuron model

these spiking neurons that are organized in a feedforward or
recurrent structure. Early classification decision can be made
from the SNN after the generation of the first output spike.
However, the quality of the classification decision is typically
improved over time with the accumulating evidence. This is
fundamentally different than the synchronous information pro-
cessing of the conventional ANN, in which the output layer is
not activated until all preceding layers are fully updated.

In this work, we use the integrate-and-fire (IF) neuron
model with reset by subtraction scheme [14], which can effec-
tively process these quasi-stationary frame-based acoustic fea-
tures with minimal computational costs. At each time step ¢ of
a discrete-time simulation, the incoming spikes to neuron j at
layer [ are integrated into subthreshold membrane potential le
as follows:
s

[t = Vi [t — 1] + RIj[t] — 9Sj[t — 1] (1)

with

Ll =) wi 'S [t + b, ©)
where wé-i_l denotes the synaptic weight that connects presy-
naptic neuron ¢ from layer [ — 1 and bé— can be interpreted as a
constant injecting current. In addition, Sllfl [t] indicates the oc-
currence of an input spike from afferent neuron 7 at time step ¢.
1 Jl [t] denotes the resulted synaptic current from incoming spike
trains. Without loss of generality, a unitary membrane resis-
tance R is assumed here. An output spike is generated whenever
le [t] crosses the firing threshold + as per Eq. 3, which is set to
1 in the experiments by assuming that all synaptic weights are
normalized with respect to ©J. Following a spike generation, the
membrane potential is reset by subtracting the firing threshold
¥ as described by the last term of Eq. 1. The V;/[0] is reset and
initialized to zero for every new input frame,

L,
0,

ifx>0
otherwise.
3)
According to Egs. 1 and 2, the free aggregated membrane
potential of neuron j (no firing) in layer [ across the simulation
time window N, can be expressed as

Lf -1 1-1
Vit = g Wi G
-1

where c;” " is the input spike count from pre-synaptic neuron ¢
atlayer/ — 1 as

Sii) = (V- v) with © (2) = {

+ b5 N, )

-1 Ns  qi—1
=" ST )
The le’f summarizes the aggregate membrane potential contri-
butions of the incoming spike trains while ignoring their tem-
poral distribution. As detailed in Section 2.3, this intermediate
quantity links the SNN layers to the coupled ANN layers for the
parameter optimization.

2558

2.2. Neural Coding Scheme

SNN process information transmitted via spike trains which
requires encoding the continuous-valued feature vectors into
spike trains at the front-end and perform classification based
on the activity of output neurons.

To encode the frame-based input feature vector X
(MFCC features in this case) into spike trains, where X =
[X1, 22, -, xn]T, we take X as the synaptic current and di-
rectly apply it into Eq. 1 at the first time step. Comparing
to the commonly used rate coding scheme, whereby the real-
valued inputs are sampled into spike trains following a Pos-
sion or Bernoulli distribution [15], this neural encoding scheme
eliminates the sampling errors. Moreover, it allows the input
information to be encoded within the first few time steps that
is beneficial for rapid inference. Starting from this neural en-
coding layer, the spike count ¢’ and spike train S' are input to
subsequent ANN and SNN layers for tandem learning.

To ensure a smooth learning with high precision error gra-
dients derived at the output layer, instead of using spike count
for neural decoding, we use the free aggregate membrane po-
tential of output spiking neurons as the posterior probability for
different output classes.

2.3. Training Deep SNNs with Tandem Learning

The tandem learning rule used for training deep SNNs exploits
the connection between the activation value of ANN neurons
and the spike count of IF neurons. Within the tandem learn-
ing framework, a SNN is coupled with an ANN through weight
sharing. The SNN layers are used to determine the exact spike
representation, which then propagate the aggregate spike counts
and spike trains to the subsequent ANN and SNN layers, respec-
tively. It ensures the information that forward propagated to the
coupled ANN and SNN layers are synchronized. It is important
to note that the ANN is just an auxiliary structure to facilitate
the training of SNN and only SNN is used during inference.

As the input features are effectively encoded as spike
counts, the temporal structure of the spike trains carries negligi-
ble information. Hence, the non-linear transformation of SNN
layers can be formulated as

cé- =f (Sl_l;w;-_l,bé-) (6)
where f() denotes the effective transformation performed by
spiking neurons. However, an analytical expression from S'~!
to cé cannot be determined directly due to the state-dependent
nature of spike generation. Therefore, we simplify the spike
generation process by assuming the resulting synaptic contribu-
tions from S'~! are evenly distributed over the simulation time
window. With this assumption, the interspike interval can be
determined as follows

0 9
ISI; =p <l) =p
f -1 1—1 1
V! /N, (Xi:wji ¢+ biNs)/Ns
@)
The approximated ‘spike count’ aé- can be obtained as
! N 1 -1 1-1 | 4l
ERR SR UL B A

Given a unitary firing threshold ¥, aé- can be effectively deter-
mined from an ANN layer of ReLU neurons by setting the spike



count céfl as the input and the aggregated constant injecting
current bé- N as the bias term. This simplification of spike gen-
eration process allows the spike-train level error gradients to be
approximated from the ANN layer. Algorithmic details of the
tandem learning rule can be found in [25].

2.4. SNN-based Keyword Spotting System

With the learning rule described in the previous section, we
train a fully-connected and a convolutional SNN model that
are designed to detect keywords in fixed-length speech seg-
ments. These models are compared with a conventional DNN
and CNN model with identical network architectures. The ar-
chitectures and sizes of both models are chosen in line with the
prior work describing CNN-based KWS techniques [30]. The
convolutional layers perform 2-D convolution over the acoustic
features followed by batch normalization and ReLU activation
function. A max-pooling layer is also included in the first con-
volution layer to reduce dimensionality. All models are applied
to a KWS task with multiple keywords and a wakeword de-
tection task with a single target keyword. The former task is a
multi-class classification task, while the latter is a detection task
with binary output. We further delve into the noise-robustness
of these models by performing multi-condition training and ex-
plore the performance under clean and noisy scenarios.

3. Experimental Setup
3.1. Datasets

The proposed model is evaluated on the Speech Commands [31]
and the 2" version of the Hey Snips [32] datasets. We use
the data preparation setup of the Tensorflow example' for re-
producibility. This setup prepares 36 922 training, 4445 valida-
tion and 4890 test utterances of 1 second duration with 10 tar-
get keywords, ’yes”, “no”, "up”, "down”, "left”, “right”, “on”,
”off”, ”stop” and ’go”. The remaining 20 commands, “bed”,
“bird”, “cat”, “dog”, “happy”, “house”, “Marvin”, “Sheila”,
“tree”, “wow” and ten numbers (0-9), are used as unknown
words which comprise 10% of the training data. 10% of the
training data consists of silence utterances.

The Hey Snips wakeword detection dataset> consists of
53110 training, 8034 development and 7851 test utterances of
varying durations spoken by approximately 1.8k speakers. We
extract the first second containing speech from each utterance
using an energy-based speech activity detection and use these
fix-duration utterances in the experiments.

Noisy versions of each dataset are created by artificially
adding noise-only segments from the MUSAN corpus [33] at
random SNR levels between -5 and 10 dB. The multi-condition
training sets are created by combining the clean and noisy train-
ing set.

3.2. Implementation details

40-dimensional Mel-frequency cepstral coefficients (MFCC)
are extracted with a frame shift of 10ms and a frame length of
30 ms as acoustic features. Resulting 98 frames are stacked to
create a 3920-dimensional vector which is fed to the input layer
of each neural network model. All neural network models are
implemented in PyTorch [34]. The DNN and its spiking coun-
terpart (spikeDNN) has 3 layers, each with 128 hidden units.

lhttps://github.com/tensorflow/tensorflow/tree/
master/tensorflow/examples/speech_commands

2http://research.snips.ai/datasets/keyword—spotting
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The CNN and and its spiking counterpart (spikeCNN) has two
convolutional layers followed by a single fully connected layer
with 100 hidden units. The first convolutional layer has 64 fil-
ters with filter size of 20 and 8 in time and frequency dimension,
respectively. A 3x3 max-pooling filter has been applied after the
first convolutional layer. The second convolutional layer has 32
filters with filter size of 10 and 4 in time and frequency, respec-
tively. Each layer has batch normalization and ReL.U activation
function. The total number of model parameters is approxi-
mately 0.5M for all models. For SNN simulations, all features
are encoded within a short time window of 10-time steps.

The neural network training is performed using the Stochas-
tic Gradient Descent (SGD) optimizer with an initial learning
rate (LR) of 0.001 and a minibatch size of 100 during clean
training and 200 during the multi-condition training. The LR is
reduced to 0.0001 after 15 000 training steps and the final model
is obtained after 18 000 training steps on the Speech Commands
dataset. A similar procedure is followed for training the models
on the Hey Snips dataset. Due to faster convergence, the LR is
reduced after 4500 training steps and the final model is obtained
after 6000 training steps.

3.3. Evaluation Metrics

The keyword detection accuracy is reported using false rejec-
tion rate (FRR) vs. false alarm rate (FAR) plots. For the speech
commands dataset which contains 10 keywords, we report aver-
aged FRR vs. FAR plots which is obtained by getting the aver-
age FRR for all FAR values given by different detection thresh-
olds. To compare the energy efficiency of CNN and spikeCNN,
we follow the NC community convention and compute the total
synaptic operations SynOps that are required to perform a cer-
tain task [11, 14, 15]. For conventional ANN, the total synap-
tic operations (Multiply-and-Accumulate (MAC)) per classifi-
L

cation is defined as SynOps(ANN) = Y fL N, where f},, de-
=1
notes the number of fan-in connections to each neuron in layer
l, and N; refers to the number of neurons in layer I. L de-
notes the total number of network layers. For spiking networks,
the total synaptic operations (Accumulate (AC)) per classifi-
cation are correlated with the neurons’ firing rate, the number
of fan-out connections f,,: to neurons in the subsequent layer

as well as the simulation time window N, SynOps(SNN) =
Ny L—1 N

S22 X fourySiltl:

t=1 1=1 j=1

4. Results
4.1. KWS Results

The KWS results provided by DNN, spikeSNN, CNN and
spikeCNN under clean training and testing conditions are given
in Figure 2a. The spikeDNN performs significantly worse than
the rest and there is a large performance gap with the conven-
tional DNN model. In the presence of convolution layers, the
performance gap between the ANN and SNN models dimin-
ishes and spikeCNN and CNN provide comparable results un-
der clean conditions.

We further apply multi-condition trained CNN and
spikeCNN models to the clean and noisy test set. The perfor-
mance curves are given in Figure 3a. In general, spikeCNN
and CNN models provide comparable results in each condition.
Conventional CNN performs marginally better under clean test-
ing scenario, while spikeCNN outperforms the CNN by a nar-
row margin under noisy testing scenario.
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4.2. Wakeword Detection Results

When the same models are applied to a wakeword detection
task with a binary decision, the spikeDNN model gives supe-
rior performance compared to the ANN counterpart. Includ-
ing convolutional layers reduces both errors substantially, while
both spikeCNN and CNN models provide comparable wake-
word detection performance. The multi-condition trained CNN
and spikeCNN models are first applied to clean test set to quan-
tify the performance degradation compared to the clean trained
models. Based on the CNN and spikeCNN results in Figure 2b
and 3b, the spikeCNN model is more robust to the mismatch
between the training and testing conditions than CNN.

After investigating the clean testing scenario, we move
to a more realistic setting with noise-mixed test utterances.
Compared to the noisy KWS, the performance gap between
spikeCNN and CNN grows indicating the superior performance
of convolutional SNN models on the wakeword detection task.

4.3. Computational Efficiency

We report the ratio of average synaptic operations (Syn-
Ops(SNN)/SynOps(ANN)) required for the systems compared
in Figure 3. The synaptic operations for each system are calcu-
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lated on a single minibatch of data used during the training. The
average spike count per neuron on different task and testing con-
ditions are shown in Figure 4. In general, the neuronal activities
are sparse for all network layers given the short encoding time
window (INs = 10). On both tasks, we observe slightly reduced
neuronal activity at each layer under noisy testing conditions.

For the KWS (wakeword detection) task, the ratio of aver-
age synaptic operations is 0.47 and 0.43 (0.90 and 0.69) under
clean and noisy testing conditions, respectively. It is important
to note that the AC operations performed on SNN are consider-
ably cheaper than the MAC operations required for ANN, e.g.
14 times cheaper and requires 21 times fewer chip area on the
Global Foundry 28 nm according to a recent study [14]. Based
on this study, the target applications can be performed with 15
to 30 times reduced energy using SNNs on the neuromorphic
chips [10, 11].

5. Conclusion

This paper describes a deep convolutional SNN model for KWS
and wakeword detection. The spiking models are trained using
a recently proposed tandem learning rule which uses coupled
ANN-SNN to train SNN models by performing the backpropa-
gation algorithm through the coupled ANN. After the promising
results obtained on LVCSR, this work explores the performance
and computational efficiency of spiking models trained using
the tandem learning rule on KWS and wakeword detection tasks
which have various applications for mobile and embedded de-
vices with power restrictions. The experiments performed on
the Speech Commands KWS and the Hey Snips wakeword de-
tection dataset demonstrate that the convolutional SNN-based
systems provide comparable performance on KWS and better
performance on the binary wakeword detection task compared
to the conventional CNN models with a ratio of average synap-
tic operations of 0.45 and 0.8, respectively, corresponding to
approximately 15-30 times reduced energy consumption.
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